Variant Classification: ACMG recommendations

Andreas Laner

MGZ München laner@mgz-muenchen.de

Overview

Introduction

ACMG-AMP Classification System

• Evaluation of inter-laboratory concordance in variant classification

Link for download the ACMG Standards and Guidelines

https://www.acmg.net/docs/Standards Guidelines for the Interpretation of Sequence Variants.pdf

search: "acmg standards and guidelines"

Why do we need classification systems

Hum Mutat. 2008 November; 29(11): 1282-1291. doi:10.1002/humu.20880.

Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results

Sharon E, Plon^{1,*,#}, Diana M. Eccles^{2,*}, Douglas Easton³, William D. Foulkes⁴, Maurizio Genuardi⁵, Marc S. Greenblatt⁶, Frans B.L. Hogervorst⁷, Nicoline Hoogerbrugge⁸, Amanda B. Spurdle⁹, and Sean Tavtigian 10 for the IARC Unclassified Genetic Variants Working

Proposed Classification System for Sequence Variants Identified by Genetic Testing

Class	Description	Probability of being Pathogenic
5	Definitely Pathogenic	>0.99
4	Likely Pathogenic	0.95-0.99
3	Uncertain	0.05-0.949
2	Likely Not Pathogenic or of Little Clinical Significance	0.001-0.049
1	Not Pathogenic or of No Clinical Significance	<0.001

5 classes linked to validated quantitative measures of causality/ pathogenicity

Class	Clinical Testing	Surveillance Recommendations if At-Risk Relative is Positive	Research Testing of Family Members
5	Test at-risk relatives for variant	Full high-risk surveillance guidelines	Not indicated
4	Test at-risk relatives for variant*	Full high-risk surveillance guidelines	May be helpful to further classify variant
3	Do not use for predictive testing in at-risk relatives *	Based on family history (and other risk factors)	May be helpful to further classify variant
2	Do not use for predictive testing in at-risk relatives*	Treat as "no mutation detected" for this disorder	May be helpful to further classify variant
1	Do not use for predictive testing in at-risk relatives *	Treat as "no mutation detected" for this disorder	Not indicated

All 5 classes are linked to clinical recommendations

Goal of IARC: To give actionable clinical recommendations to genetic data Accurate and consistent variant classification is prerequisite for Dx & Precision Medicine

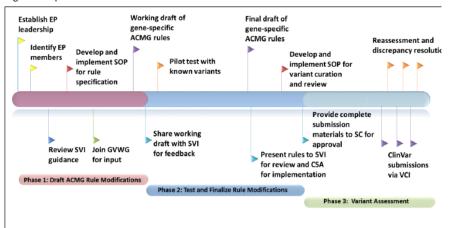
Why do we need classification systems

BRCA1 NM_007294.3 c.5095C>T p.(Arg1699Trp) Class 5 Absent controls, in PS3, PM1, PM2, PM5, Multifactorial "RING" domain, PP1, PP3, PP5 likelihood: 0,99 segregates, ... **ACMG** "Lab C" **ENIGMA** classification classification classification Submitter A Submitter C Submitter B

Example of pathogenic variant BRCA1 p.Cys61Gly (ClinVar)

Clinical significance (Last evaluated)	Review status (Assertion method)	Collection method	Condition(s) (Mode of inheritance)	Origin	Citations	Submitter - Study name							
Pathogenic (Aug 10, 2015)	reviewed by expert panel • ENIGMA BRCA1/2 Classification Criteria (2015)	curation	Breast-ovarian cancer, familial 1 [MedGen OMIM]	germline	PubMed (1) [See all records that cite this PMID] Other citation	Evidence-based Network Interpretation of Germline Alletes (ENIGMA) Study description							
Pathogenic (Nov 3, 2014)	criteria provided, single submitter • ACMG Guidelines, 2015 • ACMG Guidelines, 2015	clinical testing	Breast-ovarian cancer, familial 1 [MedGen OMIM]	germline		Michigan Medical Genetic Laboratories, University of Michigan							
Pathogenic (Feb 11, 2016)	criteria provided, single submitter • LMM Criteria	clinical testing	Hereditary breast and ovarian cancer syndrome (Autosomal dominant inheritance) [MedGen Orphanet]	germline	= PubMed (8) [See all records that cite these PMIDs]	Laboratory for Molecular Medicine, Partners Health Personalized Medicine	Care						
Pathogenic (Dec 30, 2014)	criteria provided, single submitter	clinical testing	Hereditary cancer- predisposing syndrome	germline		Color Genomics, Inc.,							
(Dec 30, 2014)	ACMG Guidelines, 2015 ACMG Guidelines, 2015		[MedGen]				Pathogenic	criteria provided, single submitter • <u>Carraro et al.</u> (PLoS One. 2013)	research	Breast cancer [MedGen]	germline	PubMed (2) [See all records that cite these PMIDs]	Laboratory of Genomics and Molecular Biology, A. C. Camargo Cancer Center Study description
Pathogenic (Feb 18, 2015)	criteria provided, single submitter • Quest pathogenicity assessment criteria	clinical testing	Breast-ovarian cancer, familial 1 (Autosomal dominant inheritance) [MedGen OMIM]	germline	PubMed (11) [See all records that cite these PMIDs]	Quest Diagnostics Nichols Institute San Juan Capistr	Pathogenic (Feb 22, 2016)	criteria provided, single submitter • Ambry Autosomal Dominant and X-Linked criteria (10/2015)	clinical testing	Hereditary cancer- predisposing syndrome [MedGen]	germline		Ambry Genetics
Likely pathogenic (Jul 1, 2016)	criteria provided, single submitter - ACMG Guidelines, 2015 - ACMG Guidelines, 2015	clinical testing	Familial cancer of breast [MedGen Orphanet OMIM]	germline		GeneKor MSA	Pathogenic (Jan 20, 2017)	criteria provided, single submitter • GeneDx Variant Classification (06012015)	clinical testing	not provided [MedGen]	germline		GeneDx
Pathogenic (Oct 2, 2015)	criteria provided, single submitter - CIMBA Mutation Classification guidelines May 2016	clinical testing	Breast-ovarian cancer, familial 1 [MedGen OMIM]	germline		Consortium of Investigato Modifiers of BRCA1/2 (CII c/o University of Cambride	№ Pathogenic	criteria provided, single submitter • ACMG quidelines, 2007	clinical testing	Hereditary breast and ovarian cancer syndrome [MedGen Orphanet]	germline		Genetics Diagnostic Laboratory, Children's Hospital of Eastern Ontario Study description
							Pathogenic (May 13, 2015)	criteria provided, single submitter • EGL Classification Definitions	clinical testing	Breast-ovarian cancer, familial 1 [MedGen OMIM]	germline	• Other citation 🗹	Emory Genetics Laboratory,Emory University
*	ACMG-A	MP CI	assificatio	on Sy	stem		Pathogenic (Jan 18, 2017)	criteria provided, single submitter Invitae Variant Classification Sherloc (09022015)	clinical testing	Hereditary breast and ovarian cancer syndrome [MedGen Orphanet]	germline	PubMed (2) [See all records that cite these PMIDs]	Invitae
* I	Different	t Class	ification S	Syste	ms		Pathogenic (Feb 23, 2017)	criteria provided, single submitter • ACMG Guidelines,	clinical testing	Familial cancer of breast (Autosomal dominant inheritance)	germline		Baylor Miraca Genetics Laboratories Study description

14 submissions / 10 different classification systems


Expert Panel Classification

https://www.clinicalgenome.org/

ClinGen promotes formation of gene/ disease specific Expert Panels (EP)

Figure 2: Expert Panel milestones

3.1 Overarching Goals

- Define the set of conditions and associated genes that fall within the Clinical Domain WG.
 - Evaluate the clinical validity (strength of evidence) of gene-disease associations for condition(s) within the working group domain (see 3.2).
 - Prioritize genes and conditions for attention by the WG, considering those that have not been sufficiently evaluated and annotated for clinical use as potential priorities.
 - Identify other groups with overlapping interests in gene-disease associations relevant to the conditions that are the responsibility of the WG in order to coordinate efforts.
- Facilitate deposition of variants from clinically relevant genes into ClinVar (see 3.3).
 - Identify existing professional guidelines and community-organized efforts that are curating variants in genes related to the specific disease domain.
 - Serve as a liaison to locus specific databases (LSDBs) and similar research efforts in order to facilitate reciprocal exchange of data between LSDBs and ClinVar.
 - Identify clinical laboratories that perform testing in the clinical domain and facilitate interactions with ClinGen staff for data submission to ClinVar.
- Encourage development of Expert Panels to evaluate the clinical significance of genetic variants for submission to ClinVar.
 - Identify and encourage external groups that are already involved in curating genetic variants within the domain, and coordinate with them to avoid duplicating effort.
 - Review and evaluate the information provided from external curation groups for 3-star "Expert Panel" status in ClinVar based on the review process developed by the ClinGen Steering Committee.
 - Establish ClinGen Expert Panels to focus on conditions deemed important by the CDWG but not currently served by an existing community effort (see 3.4).
 - Perform specification of the ACMG/AMP sequence variant interpretation guidelines framework for variant classification to the respective diseases/genes.

Expert Panel Classification

https://www.clinicalgenome.org/

Clinical Domain WG	Expert Panel	Status
Cardiovascular CDWG	Brugada Syndrome Gene Curation Expert Panel	
	Cardiovascular Dilated Cardiomyopathy Gene Curation Expert Panel (In progress)	
	Cardiovascular Familial Hypercholesterolemia Variant Curation Expert Panel (In progress)	
	Cardiovascular KCNQ1 Variant Curation Expert Panel (In progress)	
	Cardiovascular LQTS Gene Curation Expert Panel (In progress)	
	Familial Thoracic Aortic Aneurysm and Dissection Gene Curation Expert Panel	
	Hypertrophic Cardiomyopathy Gene Curation Expert Panel	
	Inherited Cardiomyopathy Variant Curation Expert Panel	
Hearing Loss CDWG	Hearing Loss Gene Curation Expert Panel	_
	Hearing Loss Variant Curation Expert Panel (In progress)	
Hemostasis/Thrombosis CDWG	Platelet Disorders Expert Panel	N/A
Hereditary Cancer CDWG	Breast and Ovarian Cancer Gene Curation Expert Panel	_
	CDH1 Variant Curation Expert Panel (In progress)	
	Colon Canoer and Polyposis Gene Curation Expert Panel	_
	Hereditary Canoer Gene Curation Expert Panel (In progress)	
	Myeloid Malignancy Variant Curation Expert Panel (In progress)	
	PTEN Variant Curation Expert Panel (In progress)	
	Somatio/Germline Variant Curation Group (In progress)	
	TP53 Variant Curation Expert Panel (In progress)	
Inborn Errors of Metabolism CDWG	Aminoacidopathy Gene Curation Expert Panel (In progress)	
	Fatty Acid Oxidation Gene Curation Expert Panel (In progress)	
	Mitochondrial Disease Gene Curation Expert Panel (In progress)	
	Mitochondrial Disease Variant Curation Expert Panel (In progress)	
	PAH Variant Curation Expert Panel	
	Storage Diseases Variant Curation Expert Panel (In progress)	
Monogenic Diabetes CDWG	Monogenic Diabetes Variant Curation Expert Panel (In progress)	
Neurodevelopmental Disorders CDWG	Autism and Intellectual Disability Gene Curation Expert Panel	
	Epilepsy Gene Curation Expert Panel	_
	Rett Angelman Variant Curation Expert Panel (In progress)	

MOAC

Mother Of All Classification Systems

ACMG recommendations

September/October 2000 · Vol. 2 · No. 5

ACMG recommendations for standards for interpretation of sequence variations

ACMG I

ACMG Standards and

These pretation course of (1) to pro ing of su educating may info

quence va tainty witl cance falls which the in which i Committe quence Va

variations

ACMG recommen interpretation an Revisions 2007

C. Sue Richards, PhD¹, Sherri Bale, Ph Madhuri R. Hegde, PhD6, Elaine Lyon, Laboratory Quality Assurance Commit

Key Words: clinical genetic testi

- Sequence variation is previously reported and is a rec ognized cause of the disorder. Review of the literature central mutation databases, e.g., Human Gene Mutatio Database (HGMD), or the locus-specific database, to as sess the current degree of certainty that the sequence variation causative of the disorder should be undertaken prior to re porting. Concordance studies between phenotype and ge notype within a family may provide acceptable criteria i the absence of more definitive functional studies.
- 2. Sequence variation is previously unreported and is c the type which is expected to cause the disorder. Exam ples include variation that is predicted to shift the mRN. reading frame; result in the introduction of a stop codo...

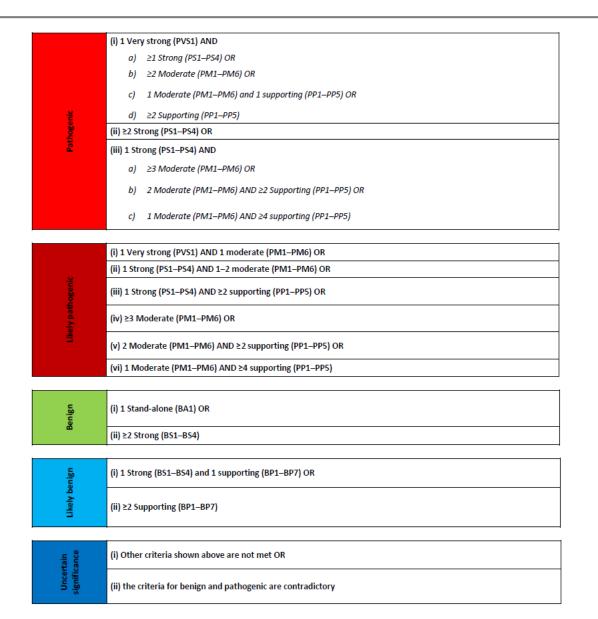
© American College of Medical Genetics and Genomics ACMG STANDARDS AND GUIDELINES

Genetics

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Sue Richards, PhD1, Nazneen Aziz, PhD2,16, Sherri Bale, PhD3, David Bick, MD4, Soma Das, PhD5, Julie Gastier-Foster, PhD^{6,7,8}, Wayne W. Grody, MD, PhD^{9,10,11}, Madhuri Hegde, PhD¹², Elaine Lyon, PhD13, Elaine Spector, PhD14, Karl Voelkerding, MD13 and Heidi L. Rehm, PhD15; on behalf of the ACMG Laboratory Quality Assurance Committee

Disclaimer: These ACMG Standards and Guidelines were developed primarily as an educational resource for clinical laboratory geneticists to help them provide quality clinical laboratory services. Adherence to these standards and guidelines is voluntary and does not necessarily assure a successful medical outcome. These Standards and Guidelines should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the clinical laboratory geneticist should apply his or her own professional judgment to the specific circumstances presented by the individual patient or specimen. Clinical laboratory geneticists are encouraged to document in the patient's record the rationale for the use of a particular procedure or test, whether or not it is in conformance with these Standards and Guidelines. They also are advised to take notice of the date any particular guideline was adopted and to consider other relevant medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.


Genetics in Medicine

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the **Association for Molecular Pathology**

Sue Richards, PhD1, Nazneen Aziz, PhD2,16, Sherri Bale, PhD3, David Bick, MD4, Soma Das, PhD5, Julie Gastier-Foster, PhD^{6,7,8}, Wayne W. Grody, MD, PhD^{9,10,11}, Madhuri Heqde, PhD¹², Elaine Lyon, PhD¹³, Elaine Spector, PhD¹⁴, Karl Voelkerding, MD¹³ and Heidi L. Rehm, PhD¹⁵; on behalf of the ACMG Laboratory Quality Assurance Committee

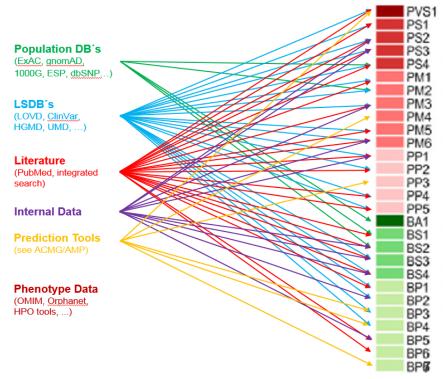
- Qualitative evaluation of different data types (28 defined criteria with assigned code)
- Each code is assigned a weight (stand-alone, very strong, strong, moderate, or supporting) and direction (benign or pathogenic)
- Variants then can be assigned in one of 5 classes (IARC 5-tier system)
- If not enough lines of evidence are invoked to classify a variant as P, LP, LB, or B, or there are valid but contradictory lines of evidence, a variant is interpreted as a VUS

	Ben	ign ←		Pathogenic				
	Strong	Supporting	Supporting	Moderate	Strong	Very strong		
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4			
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1		
Functional data	Well-established functional studies show no deleterious effect BS3		Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3			
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation data	→			
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2			
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a pathogenic variant BP2		For recessive disorders, detected in trans with a pathogenic variant PM3				
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5					
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4					

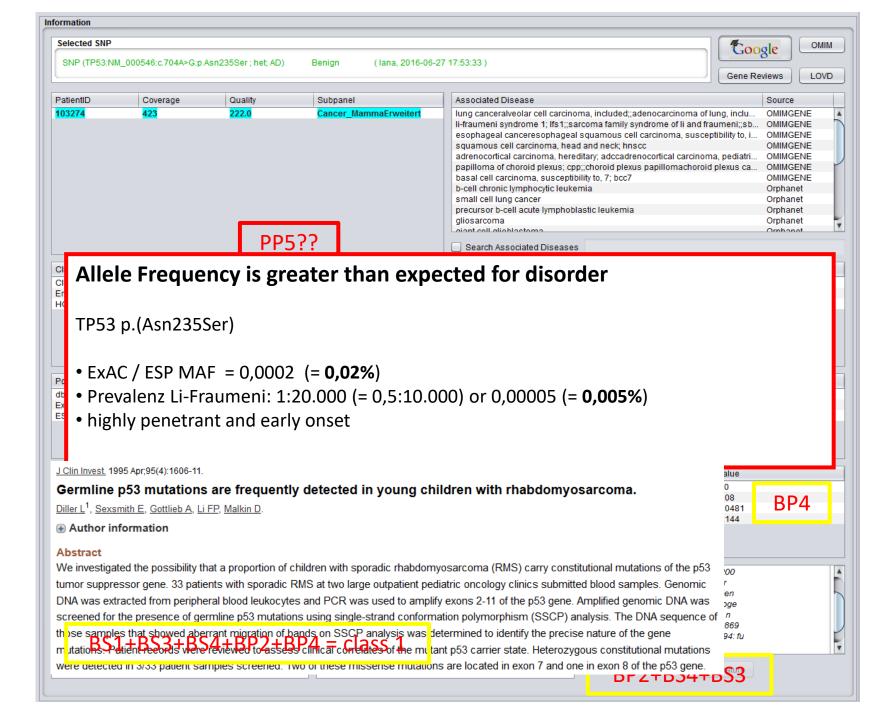
© American College of Medical Genetics and Genomics

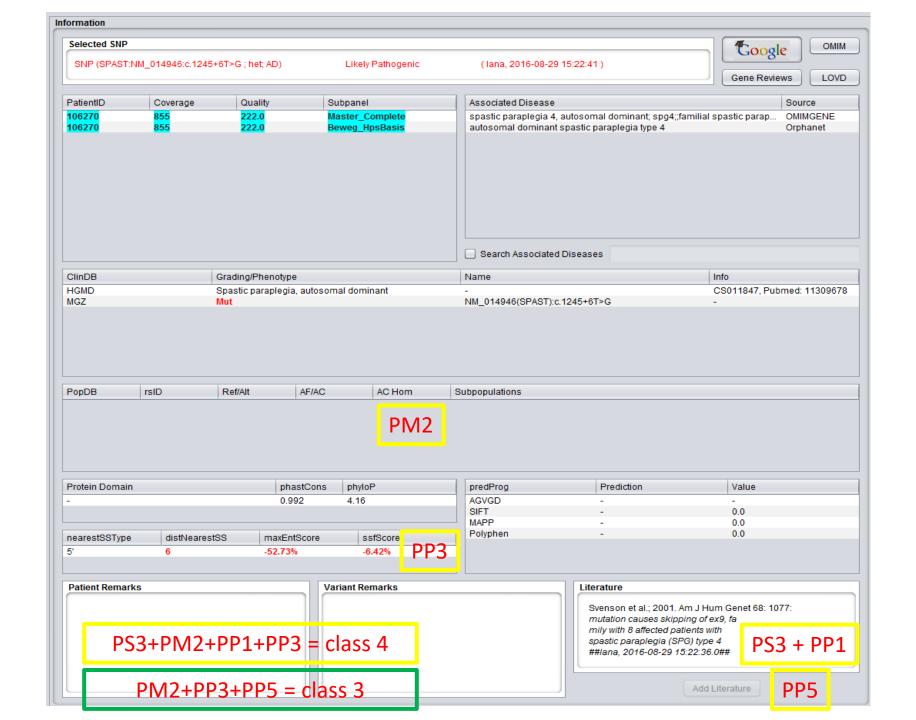
ACMG STANDARDS AND GUIDELINES

Genetics in Medicine


General Considerations:

- for variants in all Mendelian genes (single gene, gene panel, exome, genome or transcriptome)
- not for somatic, Px, multigenic/complex disorders and not for low/ moderate penetrance variants
- be carefull with candiate genes ("genes of uncertain significance"; "GUS"; Aug 2018: OMIM 3.948 genes)
- the terms "mutation" and "polymorphism" should not be used
- instead use "variant" (pathogenic (5); likely pathogenic (4); uncertain significance (3); likely benign (2); benign (1))
- variants should be reported using the HGVS nomenclature (http://www.hgvs.org/mutnomen)
- to provide flexibility: some criteria listed as one weight can be moved to another weight using professional judgment, depending on the evidence collected (multiple observations of a variant in trans with path. variant PM3 to PS)


"Pathogencity should be determined by the entire body of evidence in aggregate, including all cases studied, arriving at a single conclusion"


What are the requirements?

- Detailed population frequency data (ExAC, 1000G, now gnomAD)
- Clinical databases / LSDB's
- Thorough literature search (find AND correctly interprete the literature)
- Access to your internal DB (hopefully these data are soon published!)
- Bioinformatic prediction integrated (protein, splice sites)

27 ACMG/AMP criteria from strong pathogenic to supporting benign (Richards et al.; Genet Med. 2015)

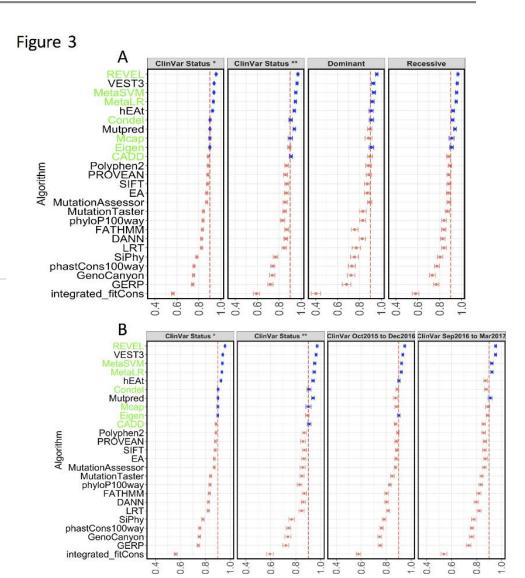
Criteria for classifying pathogenic variants (Tabelle I)

Evidence of pathogenicity		Category
	PP1	Co segregation with disease in multiple affected family members in a gene definitively known to cause the disease Note: May be used as stronger evidence with increasing segregation data
p0	PP2	Missense variant in a gene that has a low rate of benign missense variation and in which missense variants are a common mechanism of disease
Supporting	PP3	Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.) • Caveat: Because many in-silico algorithms use the same or very similar input for their predictions, each algorithm should not be counted as an independent criterion. PP3 can be used only once in any evaluation of a variant.
	PP4	Patient's phenotype or family history is highly specific for a disease with a single genetic etiology
	PP5	Reputable source recently reports variant as pathogenic, but the evidence is not available to the laboratory to perform an independent evaluation

- Choose more than one which are based on different algorithms
- Create rule how to use/interpret the results of the predictors (e.g. 3 from 5 must agree; one outlier is accepted, etc.)
- Difficult to get consensus between labs

New Results

Evaluation of in silico algorithms for use with ACMG/AMP clinical variant interpretation guidelines


Rajarshi Ghosh, Ninad Oak, Sharon E. Plon doi: https://doi.org/10.1101/146100

This article is a preprint and has not been peer-reviewed [what does this mean?].

 Abstract
 Info/History
 Metrics
 Supplementary material
 Preview PDF

Abstract

The ACMG/AMP variant classification guidelines for clinical reporting recommend complete concordance of predictions among all in silico algorithms used without specifying the number or types of algorithms. The subjective nature of this recommendation contributes to discordance of variant classification among clinical laboratories. Using 14,819 benign or pathogenic missense variants from the ClinVar database, we compared performance of 25 algorithms across datasets differing in distinct biological and technical variables. There was wide variability in concordance among different combinations of algorithms with particularly low concordance for benign variants. We identified recently developed algorithms with high predictive power and robust to variables like disease mechanism, gene constraint and mode of inheritance, although poorer performing algorithms are more frequently used based on review of the clinical genetics literature (2011-2017). We describe high performing algorithm combinations with increased concordance in variant assertion, which should lead to more informed *in silico* algorithm usage by diagnostic laboratories.

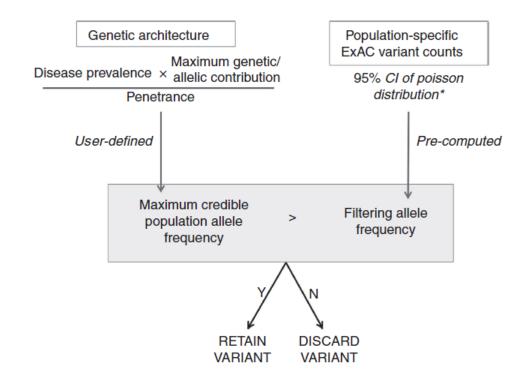
AUC

Criteria for classifying benign variants (Tabelle 2)

be	ence of nign pact	Category
Stand	BA1	Allele frequency is >5% in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium

Strong	BS1	Allele frequency is greater than expected for disorder (see Table 6)
	BS2	Observed in a healthy adult individual for a recessive (homozygous), dominant (heterozygous), or X-linked (hemizygous) disorder, with full penetrance expected at an early age
	BS3	Well-established in vitro or in vivo functional studies show no damaging effect on protein function or splicing
0,	BS4	Caveat: The presence of phenocopies for common phenotypes (i.e., cancer, epilepsy) can mimic lack of segregation among affected individuals. Also, families may have more than one pathogenic variant contributing to an autosomal dominant disorder, further confounding an apparent lack of segregation.

	BP1	Missense variant in a gene for which primarily truncating variants are known to cause disease
	BP2	Observed in trans with a pathogenic variant for a fully penetrant dominant gene/disorder or observed in cis with a pathogenic variant in any inheritance pattern
	врз	In-frame deletions/insertions in a repetitive region without a known function
Supporting	BP4	Multiple lines of computational evidence suggest no impact on gene or gene product (conservation, evolutionary, splicing impact, etc.) • Caveat: Because many in silico algorithms use the same or very similar input for their predictions, each algorithm cannot be counted as an independent criterion. BP4 can be used only once in any evaluation of a variant.
S	BP5	Variant found in a case with an alternate molecular basis for disease
	вР6	Reputable source recently reports variant as benign, but the evidence is not available to the laboratory to perform an independent evaluation
	BP7	A synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence nor the creation of a new splice site AND the nucleotide is not highly conserved


Official journal of the American College of Medical Genetic and Genomics ORIGINAL RESEARCH ARTICLE

Genetics in Medicine

Open

Using high-resolution variant frequencies to empower clinical genome interpretation

Nicola Whiffin, PhD^{1,2}, Eric Minikel, MS^{3,4}, Roddy Walsh, MSc^{1,2}, Anne H. O'Donnell-Luria, MD, PhD^{3,4}, Konrad Karczewski, PhD^{3,4}, Alexander Y. Ing, MS, CGC^{5,6}, Paul J.R. Barton, PhD^{1,2}, Birgit Funke, PhD, FACMG^{5,6}, Stuart A. Cook, PhD, MRCP^{1,2,7,8}, Daniel MacArthur, PhD^{3,4,9} and James S. Ware, PhD, MRCP^{1,2,4,10}

Variant: 15:48725102 C / T

Filter Status PASS dbSNP rs112084407 Filtering allele frequency (AF): a threshold for filtering variants that are too common to plausibly cause disease. If the variant filtering AF is greater than the maximum credible population AF for the disease of interest, the variant is too common to be causative and may be filtered. Click here to see the filtering AF calculator app and citation.

Allele Frequency 0.0007913 Filtering AF 0.001042 (

0.001042 (European (Non-Finnish))

Allele Count 96 / 121322

UCSC 15-48725102-C-T ☑

ClinVar Click to search for variant in Clinvar ☑

Annotations

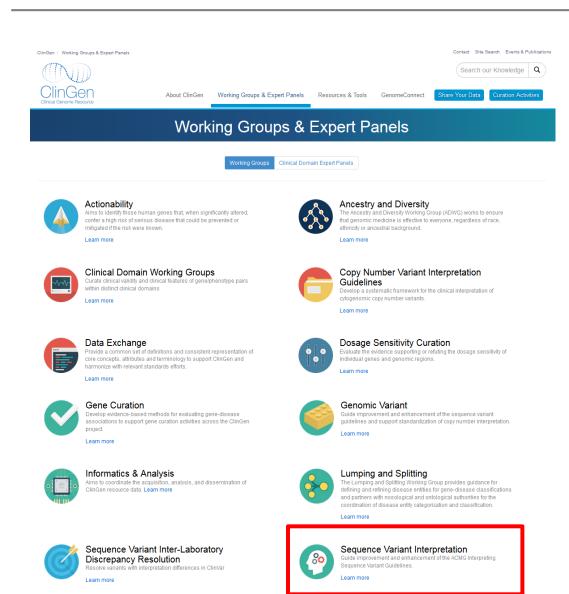
This variant falls on 5 transcripts in 1 genes:

3' UTR

• FBN1 - ENST00000537463

Note: This list may not include additional transcripts in the same gene that the variant does not overlap.

Population Frequencies


Site Quality Metrics

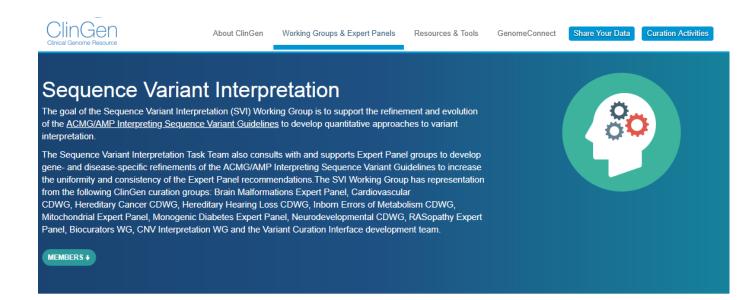

Population _	Allele Count +	Allele Number	Number of Homozygotes	Allele Frequency
European (Non- Finnish)	84	66710	0	0.001259
Latino	10	11534	0	0.000867
South Asian	2	16512	0	0.0001211
African	0	10406	0	0
East Asian	0	8638	0	0
European (Finnish)	0	6614	0	0
Other	0	908	0	0
Total	96	121322	0	0.0007913

Table 2 Maximum credible population frequencies and maximum tolerated ExAC allele counts for variants causative of exemplar inherited cardiac conditions, assuming a penetrance of 0.5 throughout

Disease	Maximum allelic contribution	Prevalence	Penetrance	Maximum population frequency	Maximum tolerated ExAC allele count
Marfan	0.015	1/3,000	0.5	5.0×10^{-6}	2
Noonan	0.10	1/1,000	0.5	1.0×10 ⁻⁴	18
CPVT	0.10	1/10,000	0.5	1.0×10^{-5}	3
Classic Ehlers-Danlos	0.40	1/20,000	0.5	2.0×10^{-5}	5

CPVT, catecholaminergic polymorphic ventricular tachycardia; ExAC, Exome Aggregation Consortium database. Prevalence estimates (taken as the highest value reported) were obtained from Marfan, ⁴⁰ Noonan, ¹⁸ CPVT, ¹⁹ and classical Ehlers-Danlos. ²⁰

SVI Publications

· Modeling the ACMG/AMP variant classification gudielines as a Bayesian classification framework

SVI Approved Expert Panel Specified ACMG/AMP Criteria

SVI approved ACMG/AMP guidelines specified by ClinGen Expert Panels.

- . MYH7 Inherited Cardiomyopathy
- RASopathy

SVI General Recommendations for Using ACMG/AMP Criteria

SVI provides general recommendations for using the ACMG/AMP criteria to improve consistency in usage and transparency in classification rationale

- · Guidance on how to rename criteria codes when strength of evidence is modified
- · BA1: Updated Recommendation for the ACMG/AMP Stand Alone Pathogenicity Criterion for Variant Classification
 - BA1 Exception List (July 2018)
 - · BA1 Exception List Nomination Form
 - PVS1: Recommendation for interpreting the loss of function PVS1 ACMG/AMP critiera (preprint)
- PS2/PM6: Recommendation for de novo PS2 and PM6 ACMG/AMP critiera (Version 1.0)
- PP5/BP6: Recommendation for reputable source PP5 and BP6 ACMG/AMP criteria

Leadership

Leslie G. Biesecker, MD

Steven Harrison, PhD

Coordinators

Please contact a coordinator if you have auestions.

Danielle Azzariti, MS, CGC dazzarit@broadinstitute.org

Membership

Membership in this committee spans many fields, including genetics, medical, academia, and industry. [View Members] For more information, please contact:

Danielle Azzariti, MS, CGC dazzarit@broadinstitute.org

New Results

Recommendations for Interpreting the Loss of Function PVSI ACMG/AMP Variant Criteria

Ahmad Abou Tayoun, Tina Pesaran, Marina DiStefano, Andrea Oza, Heidi Rehm, Leslie Biesecker, Steven Harrison, ClinGen Sequence Variant Interpretation Working Group doi: https://doi.org/10.1101/313718

This article is a preprint and has not been peer-reviewed [what does this mean?].

 Abstract
 Info/History
 Metrics
 Supplementary material
 □ Preview PDF

Abstract

The 2015 ACMG/AMP sequence variant interpretation guideline provided a framework for classifying variants based on several benign and pathogenic evidence criteria. This guideline includes a pathogenic criterion (PVS1) for predicted loss of function variants. However, the guideline did not elaborate on the specific considerations for the different types of loss of function variants, nor did it provide decision-making pathways assimilating information about the variant type, its location within the gene, or any additional evidence for the likelihood of a true null effect. Furthermore, the ACMG/AMP guideline did not take into account the relative strengths for each evidence type and the final outcome of their combinations with respect to PVS1 strength. Finally, criteria specifying the genes for which PVS1 can be used are still missing. Here, as part of the Clinical Genomic Resource (ClinGen) Sequence Variant Interpretation (SVI) Working Groups goal of refining ACMG/AMP criteria, we provide recommendations for applying the PVS1 rule using detailed guidance addressing all the above-mentioned gaps. We evaluate the performance of the refined rule using heterogeneous types of loss of function variants (n= 56) curated by seven diseasespecific groups across ten genes. Our recommendations will facilitate consistent and accurate interpretation of predicted loss of function variants.

Subject Area

Genomics

Subject Areas
All Articles
Animal Behavior and Cognition
Biochemistry
Bioengineering
Bioinformatics
Biophysics
Cancer Biology
Cell Biology
Clinical Trials
Developmental Biology
Ecology
Epidemiology
Evolutionary Biology
Genetics

Criteria for classifying pathogenic variants (Tabelle I)

Evidence of pathogenicity		Category							
лg		Null variant (nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion) in a gene where LOF is a known mechanism of disease. Caveats:							
Very strong	PVS1	 Beware of genes where LOF is not a known disease mechanism (e.g., GFAP, MYH7) Use caution interpreting LOF variants at the extreme 3' end of a gene Use caution with splice variants that are predicted to lead to exon skipping but leave the remainder of the protein intact Use caution in the presence of multiple transcripts 							

- PVS1 is a very powerful criteria
- PVS1 + PM2 (absent from controls) = class 4 (likely pathogenic)
- ➤ If criteria is not met (e.g. 3'end of gene, in frame exon skipping)
 PVS1 could not be provoked at all, these variants fall into class 3

Determination of disease mechanism is critical

TABLE 1. Criteria for LoF disease mechanism.

Follow PVS1 Flowchart if:

Clinical validity classification of gene is STRONG or DEFINITIVE

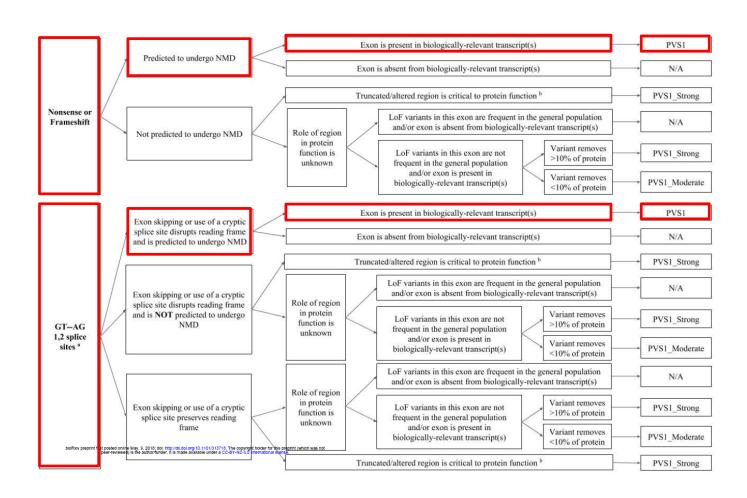
AND

 3 or more LOF variants are Pathogenic without PVS1 AND >10% of variants associated with the phenotype are LOF (must be across more than 1 exon)

. Decrease final strength by one level (i.e. VeryStrong to Strong) if:

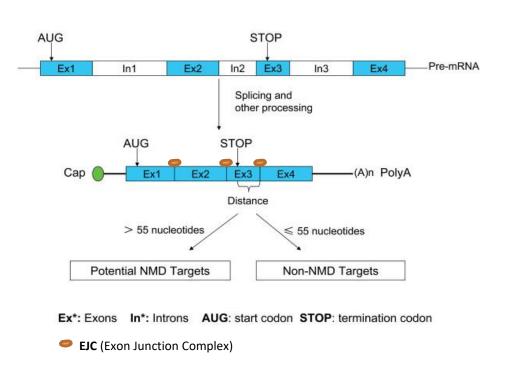
- Clinical validity classification of gene is at least MODERATE AND
- 2 or more LOF variants have been previously associated with the phenotype (must be across more than 1 exon)

AND

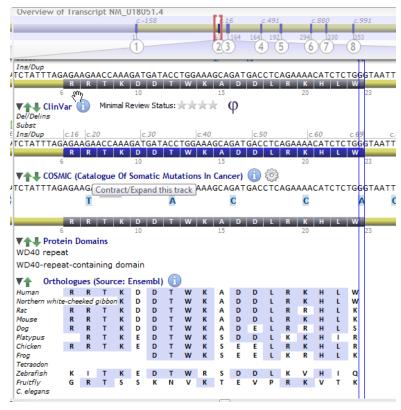

Null mouse model recapitulates disease phenotype

. Decrease final strength by two levels (i.e. VeryStrong to Moderate) if:

- Clinical validity classification is at least MODERATE
 - AND EITHER
- 2 or more LOF variants have been previously associated with the phenotype (must be across more than 1 exon)

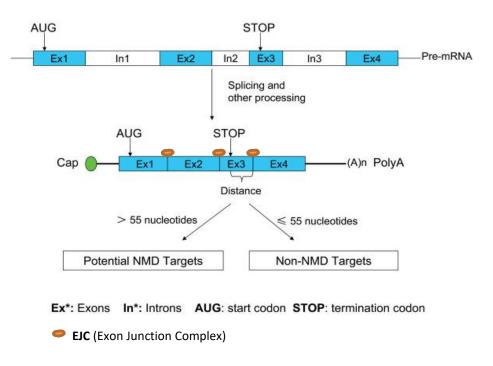

OR

- Null mouse model recapitulates disease phenotype
- If there is no evidence that LOF variants cause disease, PVS1 should not be applied at any strength level.



NMD or not NMD, that is the question

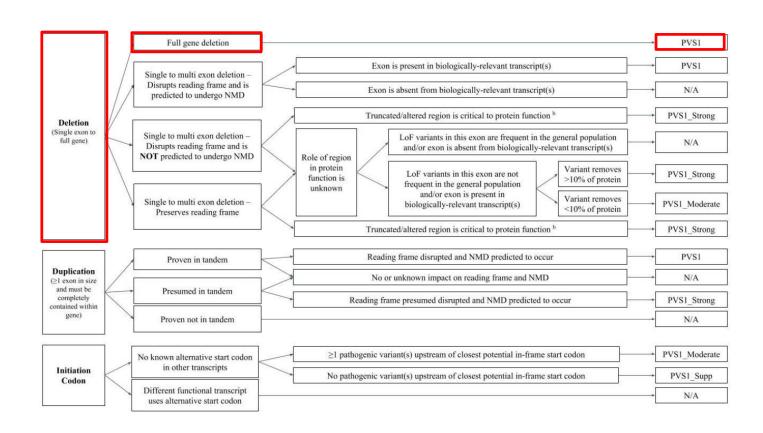
PTC in last exon or 55 nucl. of second last exon



WDR60 NM_018051:c.69G>A p.(Trp23*)

NMD or not NMD, that is the question

PTC in last exon or 55 nucl. of second last exon


WDR60 NM 018051:c.69G>A p.(Trp23*)

Splicing predictions at nearest natural junction

Predicted change at donor site 1 bps downstream: -84.4%

- MaxEnt: -86.2%
- NNSPLICE: -82.6%
- SSF: -16.3%

Supporting	PP1	Co segregation with disease in multiple affected family members in a gene definitively known to cause the disease Note: May be used as stronger evidence with increasing segregation data				
	PP2	Missense variant in a gene that has a low rate of benign missense variation and in which missense variants are a common mechanism of disease				
	PP3	Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.) • Caveat: Because many in-silico algorithms use the same or very similar input for their predictions, each algorithm should not be counted as an independent criterion. PP3 can be used only once in any evaluation of a variant.				
	P4	Patient's phenotype or family history is highly specific for a disease with a single genetic etiology				
	PP5	Reputable source recently reports variant as pathogenic, but the evidence is not available to the laboratory to perform an independent evaluation				

LETTER TO THE EDITOR

Genetics inMedicine

SVI

The ACMG/AMP reputable source criteria for the interpretation of sequence variants

To the Editor: In 2015, the American College of Medical PP1 Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) promulgated recommendations for the interpretation of sequence variants.1 These recommendations have been widely implemented and shown to be useful PP2 for improving variant classification consistency.2-4 From the Supporting beginning, they were recognized to be a starting point for further future refinements and extensions. The Clinical Genome (ClinGen) Resource is focused on curating the genome for use in molecular diagnosis.5 One such effort is the Sequence Variant Interpretation Working Group, which has taken on the task of refining and evolving the current ACMG/ AMP recommendations. This working group meets regularly and also, as individuals, interacts widely with the clinical P4 testing community. Through these interactions, the working group has received input from multiple sources that two related criteria in the original recommendations should be PP5 considered for removal from the ACMG/AMP framework:

- PP5 "Reputable source recently reports variant as pathogenic, but the evidence is not available to the laboratory to perform an independent evaluation."
- BP6 "Reputable source recently reports variant as benign, but the evidence is not available to the laboratory to perform an independent evaluation."

It is our strongly held view that primary data are far preferable to expert opinion without access to primary data. The PP5 and BP6 criteria rely on assertions that are not directly linked to the evidence on which they were based. These criteria might have been appropriate in 2015 as they were originally intended as a bridge to allow the community to benefit from clinical laboratory expertise and locus-specific research databases, prior to the wider use of resources such as ClinVar that provide mechanisms for laboratories and researchers to share underlying primary data. Indeed, ClinVar has been even more successful than hoped and now includes 580,831 assertions for over 375,106 variants (ClinVar website accessed 8 January 2018). Submissions with "assertion criteria provided" review status, designating that the submitter either provided their evidence to ClinVar or indicated a willingness to provide evidence upon inquiry, account for 81% (470,245-/580,831) of all submissions to ClinVar (ClinVar website accessed 8 January 2018). Therefore, there is less need to rely

on assertions from reputable sources in the absence of primary evidence.

A second rationale for these two criteria was to support the efforts of the Sharing Clinical Reports Project (https://www.clinicalgenome.org/data-sharing/sharing-clinical-reports-project-scrp/), in which clinicians collected the test reports (including variant interpretation) produced by a large commercial laboratory that for the past decade has consistently declined to share underlying data or to submit assertions to ClinVar. As data for hereditary breast and ovarian cancer susceptibility alleles have increasingly been forthcoming from other laboratories, the necessity of this secondary information has declined and the currency of these data has receded.

Finally, we are concerned that these two criteria may be commonly misused by laboratories that incorporate primary data into variant assessment (e.g., functional data, criteria PS3 and BS3) and at the same time invoke criteria PP5 and BP6 for existing classifications that are based on the same set of data, which may lead to double counting, and potentially lead to except in classification.

Based on these considerations, we propose that laboratories discontinue the use of criteria PP5 and BP6 as soon as that is practically achievable. We have removed these criteria from the ClinGen Variant Curation Interface. However, as with all types of evidence, interpretation of variants is the responsibility of the clinical testing laboratory director, who should account for the entirety of evidence and the sources of the data, and these recommendations should not be interpreted otherwise.

DISCLOSURE

L.G.B. is an uncompensated adviser for Illumina. S.M.H. declares no conflict of interest.

Leslie G. Biesecker, MD¹, Steven M. Harrison, PhD² and the ClinGen Sequence Variant Interpretation Working Group

³Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Betheada, Maryland, USA; ³Partners HealthCare Laboratory for Molecular Medicine and Harward Medical School, Boston, Massachusetts, USA. Correspondence: Steven M. Harvison (dharrisona/bwt-harvard cd-)

ClinGen Sequence Variant Interpretation Working Group Members: Ledic G. Biesecker (cochair), Steven Harrison (cochair), Ahmad Abou Tayoun, Jonathan Berg, Steven E. Brenner, Fergus Couch, Garry Cutting, San Ellard, David Goldstein, Marc Greenblatt, Matt Hurles, Peter Kang, Izabela Karbassi, Rachel Karchin, Jessica Mester, Robert L. Nussbaum, Anne O'Donnell-Luria, Tina Pesaran, Sharon Plon, Heidi Rehm, Sean Tavitigian, Scott Topper.

REFERENCES

 Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405–424. e the

riants are a

ıs, each evaluation

ratory to

Criteria for classifying benign variants (Tabelle 2)

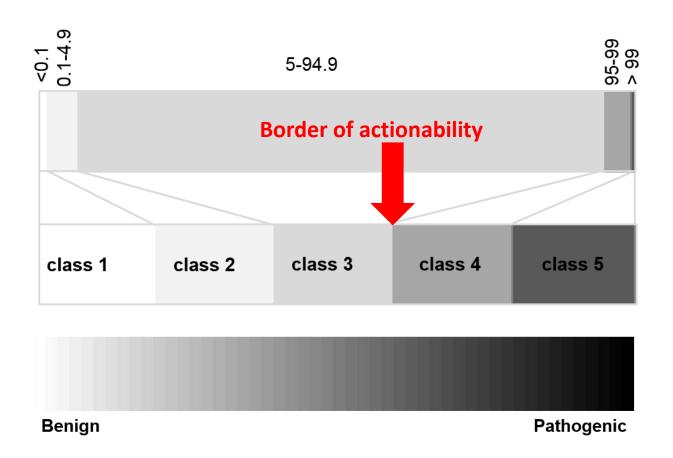
Evidend benig impa	gn	Category							
Stand	BA1	Allele frequency is >5% in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium							

- > BA1 (stand alone) means ... class 1
- Cumulative evidence suggests that this does not apply to all subpopulations
- Founder alleles in subpopulations could have higher frequencies

Gene	Variant	Classification	ACMG/AMP Criteria applied (not including BA1 or BS1)	ClinVar ID	ClinGen Allele Registry ID	Chr	Position	Ref	Alt	ExAC Source Pop	ExAC Source Pop MAF	ClinVar disease entry
ACAD9	NM_014049.4: c44 41dupTAAG	VUS	PS3_Supporting; BS2	1018	CA114709	3	128,598,490	С	CTAAG	AFR	0.1261	Deficiency of Acyl- CoA dehydrogenase family, member 9
GJB2	NM_004004.5: c.109G>A (p.Val37Ile)	Pathogenic	PS4; PP1_Strong; PM3_VeryStrong; PS3_Moderate	17023	CA172210	13	20,763,612	С	т	EAS	0.07242	Deafness, autosomal recessive
HFE	NM_000410.3: c.187C>G (p.His63Asp)	Pathogenic*	PS4	10	CA113797	6	26,091,179	С	G	NFE	0.1368	Hereditary hemochromatosis
HFE	NM_000410.3: c.845G>A (p.Cys282Tyr)	Pathogenic*	PS4; PP3	9	CA113795	6	26,093,141	G	А	NFE	0.05135	Hereditary hemochromatosis
MEFV	NM_000243.2: c.1105C>T (p.Pro369Ser)	VUS	PM3; PM5	2551	CA280114	16	3,299,586	G	А	EAS	0.07156	Familial Mediterranean fever
MEFV	NM_000243.2: c.1223G>A (p.Arg408Gln)	VUS	PM3; PM5	2552	CA280116	16	3,299,468	С	т	EAS	0.05407	Familial Mediterranean fever
PIBF1	NM_006346.2: c.1214G>A (p.Arg405Gln)	VUS	PM3; BS2	217689	CA210261	13	73,409,497	G	A	AMR	0.09858	Joubert syndrome
ACADS	NM_000017.3: c.511C>T (p.Arg171Trp)	VUS	PS3_Moderate; PM3; PP3	3830	CA312214	12	121,175,678	С	т	FIN#	0.06589	Deficiency of butyryl- CoA dehydrogenase
вто	NM_000060.4: c.1330G>C (p.Asp444His)	Pathogenic	PS3; PM3_Strong; PP3; PP4	1900	CA090886	3	15,686,693	G	С	FIN#	0.05398	Biotidinase deficiency

^{*}ACMG/AMP criteria selected does not match the classification as these variants are common low-penetrant variants and the ACMG/AMP guidelines are not designed for this variant type

Genomic coordinates on build GRCh37


AFR: African/African American, EAS: East Asian, NFE: Non-Finnish European, AMR: Latino, FIN=Finnish

[#] Detected at >5% MAF only in Finnish population (see text).

Evaluation of inter-laboratory concordance

Study	Description	Observed Concordance	Reasons for Inconsistency	Remarks
Amendola et al. Am J Hum Genet 2016	Comparison of concordance of 9 CSER- labs classifying 99 variants	34% before and 71% after consensus discussion / only 5% of differences are clinically relevant	Correct use of several ACMG rules was not clear / challenging variants	training is necessary for consistent classification / underscores importance of not only having a standardized approach to variant assessment but also sharing variant interpretations for identifying and resolving discordance
Harrison et al. Genet Med 2017	ClinVar Laboratory comparison and consistency assessment	83% initially concordant 87% of discordant variants could be resolved	ACMG rules not applied to ClinVar variants (53%) Internal data not published (33%) Differences in use/ weighting of data (14%)	Participating laboratories increased their overall concordance from 88.3 to 91.7%, sharing variant interpretations in ClinVar is critical to moving toward more consistent variant interpretations
Pepin et al. Genet Med 2016	Comparison and evaluation of consistent variant classifications (outside labs vs in house) in a distinct disease field (COLx)	29% complete, 29% "moderate" 58% not actionable	Lack of reference of the biology (48%) Lack of access to unpublished data (33%)	In diseases with a "special biology" expert knowledge is important for accurate classification / unpublished data are a major source of inconsistent classification
Balmana et al. J Clin Oncol 2016	ClinVar study comparing variant classifications of 603 variants in non-BRCA cancer genes	74% concordance 11% clinically relevant	many observed differences were because of variants in low- penetrance genes (RR<2)	Conflicting interpretation of genetic findings is frequent and may have implications for medical management decision
Yang et al. Genet Med 2017	ClinVar search of discordant actionable classifications, evaluation of reasons for inconsistencies	96% major consensus 94% complete consensus	Non-clinical lab subm. Clinical areas differ Old data points Literature citations	Recent variant classifications from clinical testing laboratories have high overall concordance.

This depends on what you compare ...

ORIGINAL RESEARCH ARTICLE

YANG et al | Sources of discordance in ClinVar

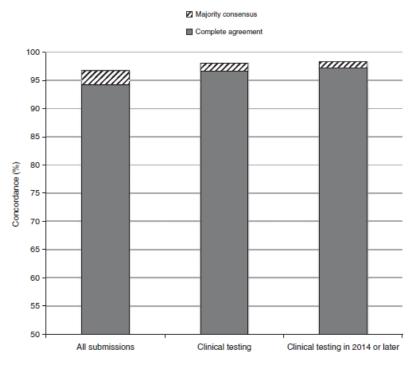
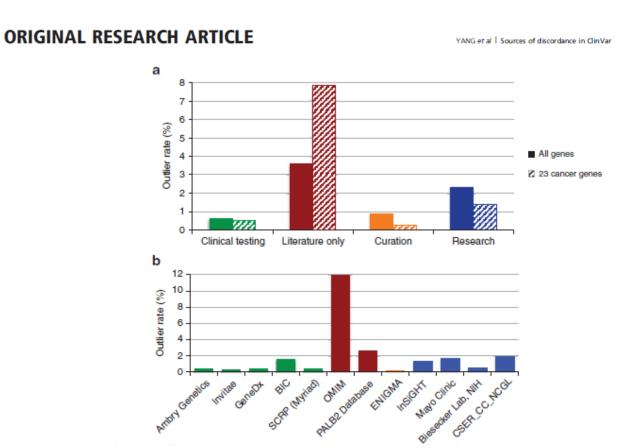
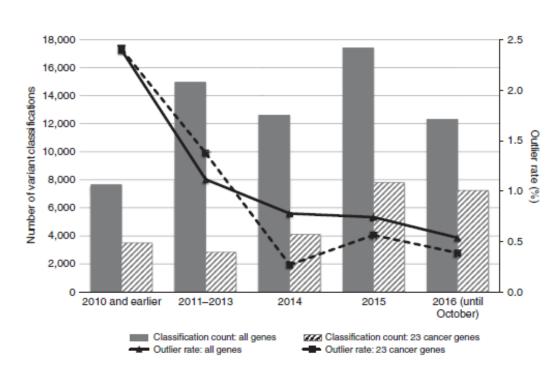




Figure 5 Concordance for ClinVar and subsets. Variant classification concordance measured as a fraction of variants for all of ClinVar and for subsets of ClinVar filtered by submission type and classification date. Concordance is calculated on an actionability basis (see text).

ORIGINAL RESEARCH ARTICLE

YANG et al | Sources of discordance in ClinVar

Summary ...

Like every new method/ technology the ACMG-AMP classification guidelines need training and time

Eventually we will get used to it

