
Potential Consequences on the RNA Level and using prediction tools

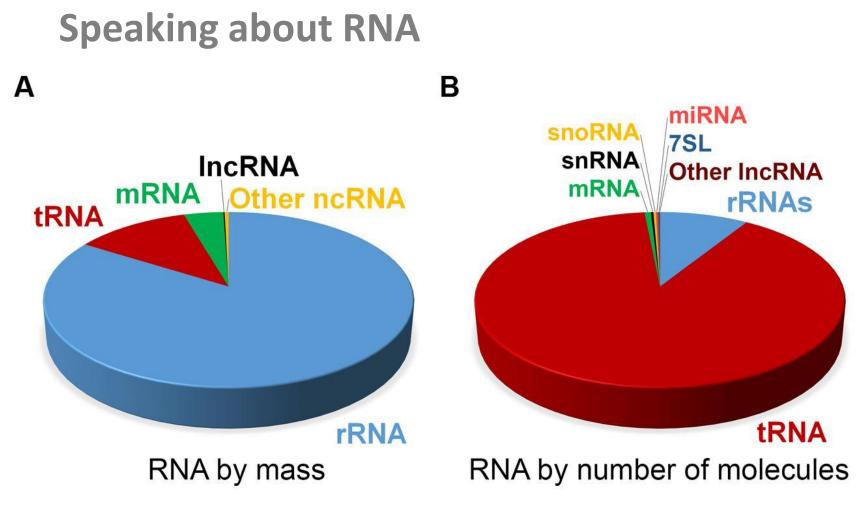
MGZ München laner@mgz-muenchen.de

Potential Consequences on the RNA Level and using prediction tools

- A. Variants altering the structure/ integrity:
- B. Variants altering the stability/ turnover:
- C. Variants altering the translation dynamics:
- D. Prediction Tools
- E. Functional RNA studies

pre-mRNA splicing

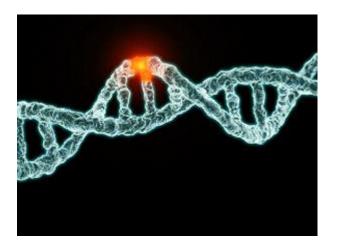
mRNA (UTRs, 3D, miRNA binding)


mRNA (codon usage, +/- ribosomal PS)

Speaking about RNA

ENCODE project (Nature 489, 57-74. 2012):

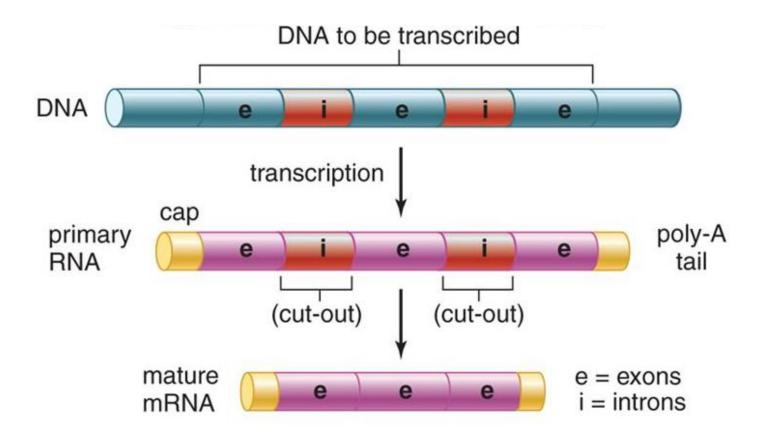
• Most of the genome (>85%) is transcribed

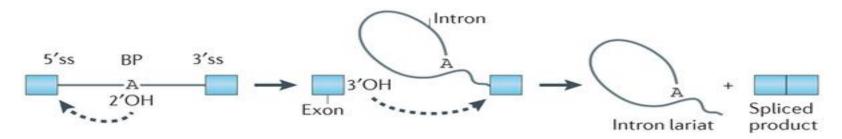

- 60.000 "genes":
- ~ 20.000 protein coding genes (>90% multiple isoforms)
- ~ 16.000 long non-coding (Inc) RNAs
- ~ 10.000 small non-coding (snc) RNAs
- ~ 14.000 pseudogenes

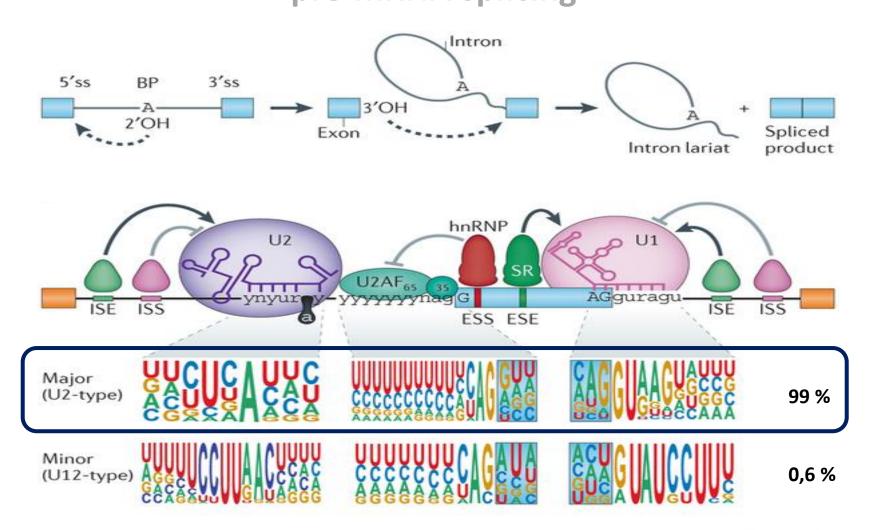
Palazzo et al.; Front. Genet., 26 January 2015

ncRNA, tRNA, rRNA, snRNA, siRNA, hnRNA, scRNA, RNA editing, Ribosome, RNP, mRNA surveillance/ decay

Potential Consequences on the RNA Level and using prediction tools

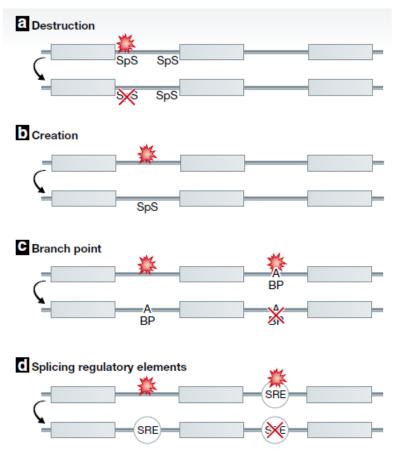

A. Variants altering the structure/ integrity:


- B. Variants altering the stability/ turnover:
- C. Variants altering the translation dynamics:
- D. Prediction Tools
- E. Functional RNA studies


pre-mRNA splicing

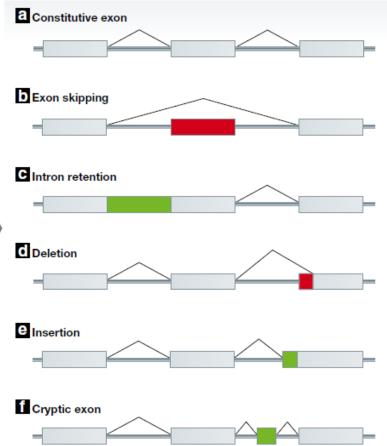
mRNA (UTRs, 3D, miRNA binding)

mRNA (codon usage, +/- ribosomal PS)

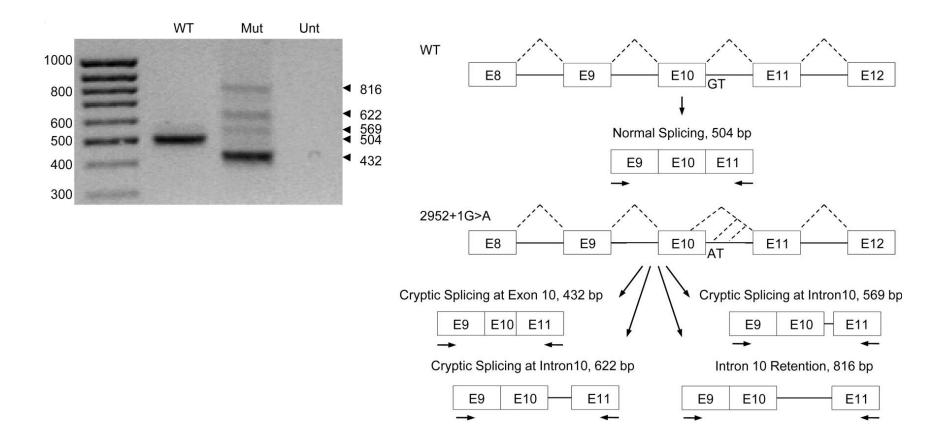

Nature Reviews | Genetics

Scotti & Swanson. Nature Reviews Genetics 17, 19-32 (2016))

Variants affecting splicing



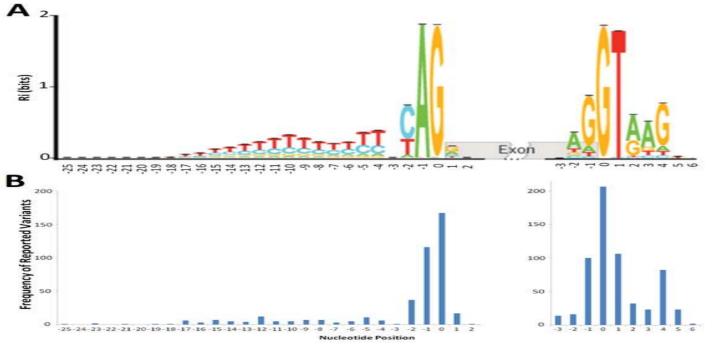
Variants affecting splicing



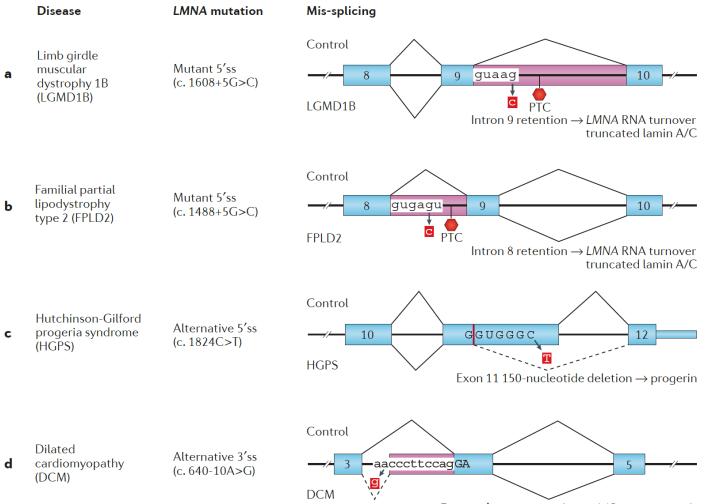
Variants affecting splicing a Destruction SpS SpS **\$**\$6 SpS **b** Creation SpS C Branch point RP BP d Splicing regulatory elements SRE SRE

Effect on RNA

Multiple splicing defects caused by hERG splice site mutation 2592+1G>A associated with long QT syndrome

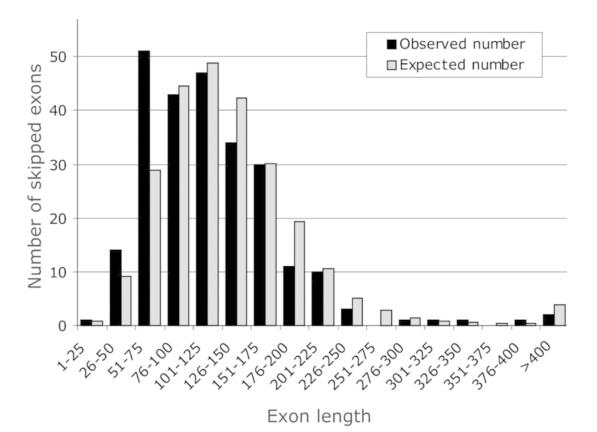


Pathogenic variants that affect pre-mRNA splicing account for at least 15% of disease-causing mutations (Krawczak et al.; *Hum Genet*. 1992; **90**(1–2): 41–54).

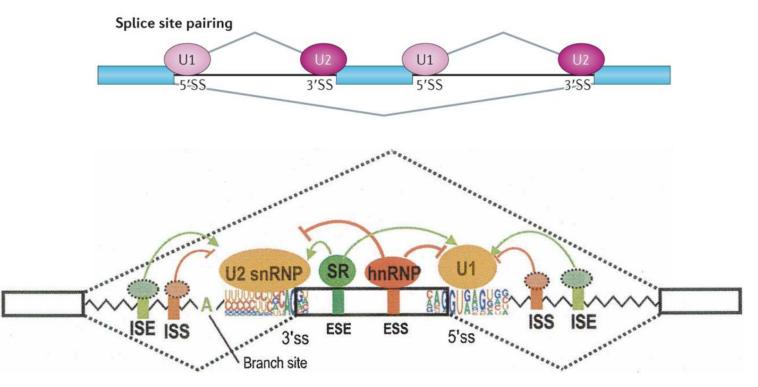

With up to 50% of all pathogenic mutations described in some genes (NF1, ATM)

(Teraoka et al.; Am J Hum Genet. 1999; 64(6): 1617–1631 / Ars et al.; Hum Mol Genet. 2000; 9(2): 237–247.)

Most variants affect the canonical (+/- 1, 2) splice sites



Caminsky et al.; F1000Research 2015



Exon 4 5' extension \rightarrow lamin A/C+3 amino acids

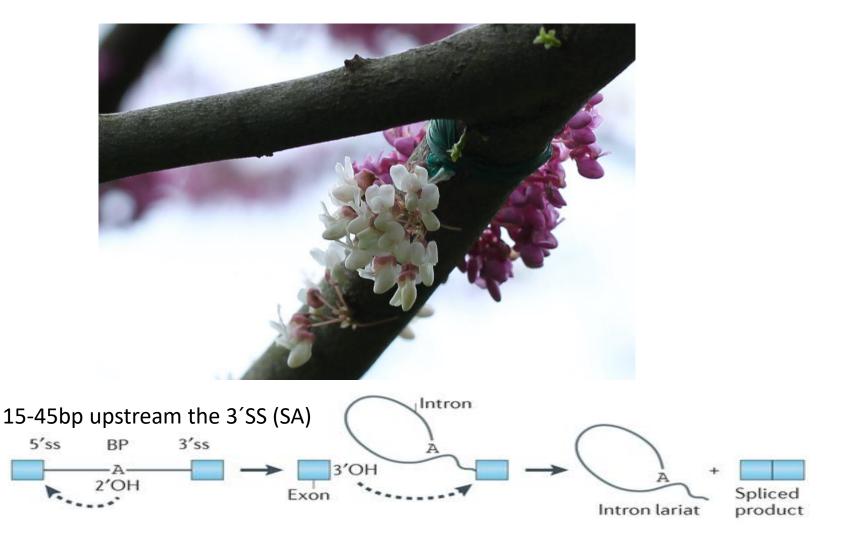
Exons that were skipped as a result of splicing variants are shorter than average exons

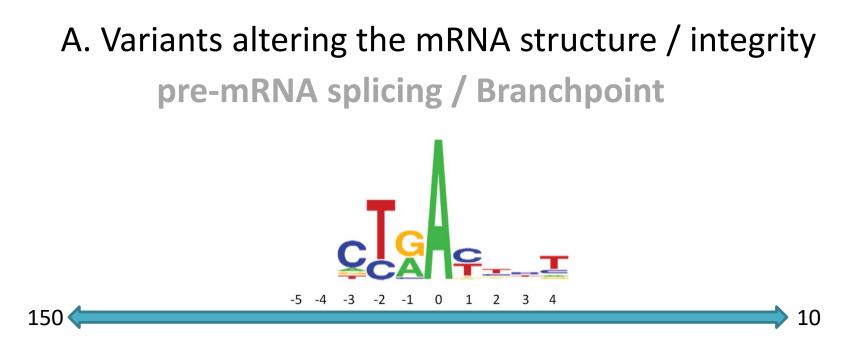
Wang et al.; RNA 14: 802-813 (2008)

LETTER TO JMG

Disruption of an exon splicing enhancer in exon 3 of *MLH1* is the cause of HNPCC in a Quebec family

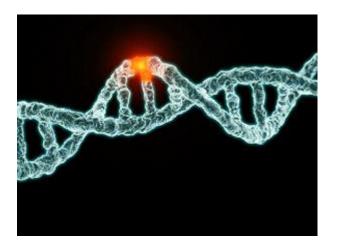
S McVety, L Li, P H Gordon, G Chong, W D Foulkes


300 + 276 bp - 276 bp - 177 bp - 177 bp -


J Med Genet 2006;43:153-156. doi: 10.1136/jmg.2005.031997

- 3 bp deletion and several point mutations (silent, missense, nonsense) disrupt an exon splicing enhancer in exon 3 of MLH1 and is the cause of HNPCC in a Quebec family.
- All the mutations cause varying degrees of exon skipping, suggesting the presence of an ESE at the 5' end of exon 3.
- These mutations are situated in a GAAGAT sequence 3 bp downstream from the start of exon 3.

Gen	Variant	Disease	Effect	Ref.
GH 1	c.176A>G	Familial isolated GH deficiency type II	Disruption of ESE	Moseley et al.; J Clin Endocrinol Metab. 2002
CFTR	c.1966G>T	Cystic Fibrosis	Disruption of ESE	Aznarez et al.; Hum. Mol. Genet. 2003
ATP6AP2	c.345C>T	X-linked parkinsonism with spasticity (XPDS)	Novel ESS creation	Korvatska et al. Hum. Mol. Genet. 2013
DMD	c.4250T>A	Becker muscular dystrophy (BMD)	Novel ESS creation	Disset et al.; Hum. Mol. Genet. 2006
ΜΑΡΤ	c.892A>G	Frontotemporal dementia (FTDP-17)	Disruption of ESS	lovino et al.; Acta Neuropathol. 2014
СҮВВ	c.389G>T	Chronic granulomatous disease (CGD)	Disruption of ESS	De Boer et al.; Blood Cells Mol Dis. 2017
OCRL	c.741G>T	Lowe syndrome / Dent-2 disease	Imbalance of ESE / ESS	Suarez-Artiles et al.; Genes. 2018
ACAT1	c.949G>A	Beta-ketothiolase deficiency (T2)	Disruption of ESS	Otsuka et al.; Mol Med Rep. 2016
ETFDH	c.158A>G	Multiple Acyl-CoA dehydrogen. deficiency	Imbalance of ESE / ESS	Olsen et al.; Hum Mutat. 2014


Pathogenic BP-Mutations are very rarely described (<20)

Possible explanations for the rarity of BPS mutations:

- Compensatory, alternative BPS sequences can be recognized and used
- The weak constraint on the precision of the distance between the BPS and the 3' (acceptor) splice site further enables activation of these alternative sites.
- Bias due to technical limitations (primer location, NGS capture or bioinformatic filter criteria)

Gene	Variant	Disease	Effect	Ref.
FBN2	c.3974-26T>G	Congenital contractural arachnodactyly	Skipping of Ex31 in 25% of transcripts	Maslen et al.; Am J Hum Genet 1997
COL5A1	c.2701-25T>G	Ehlers-Danlos syndrome (EDS)	45 bp of exon 33 are "skipped" in 60% of transcripts	Burrows et al.; Am J Hum Genet 1998
LCAT	c.524-22T>C	Fish-eye disease	Complete loss of function due to intron retention	Li et al.; Biochim Biophys Acta 1998
NPC1	c.882-28A>G	Niemann-Pick disease (NPC)	Shorter transcript lacking exon 7	Di Leo et al.; Hum Mutat 2004
KCNH2	c.2399-28A>G	Long QT (LQT)	Incorrect identification of the acceptor site of intron 9	Crotti et al.; Heart Rhythm 2009
UROS	c.661-31T>G	Congenital erythropoietic porphyria	100% intron retention without exon skipping (last exon)	Bishop et al.; Blood 2010
PTS	A>T substitution 9 nt upstream of its 3' splice site in a LINE-2 sequence	Tetrahydrobiopterin deficiency	Pseudoexon activation in a LINE- 2 sequence	Meili et al.; Hum Mutat. 2009
NF2	c.516+232G>A	Neurofibromatosis 2	Creates a functional de novo BP sequence in intron 5	De Klein et al.; Hum Mol Genet 1998
ITGB4	c.1762-25T>A	Pyloric atresia-junctional epidermolysis bullosa	Resulted in two abnormal transcripts each with a PTC	Masunaga et al.; J Dermatol Sci 2015

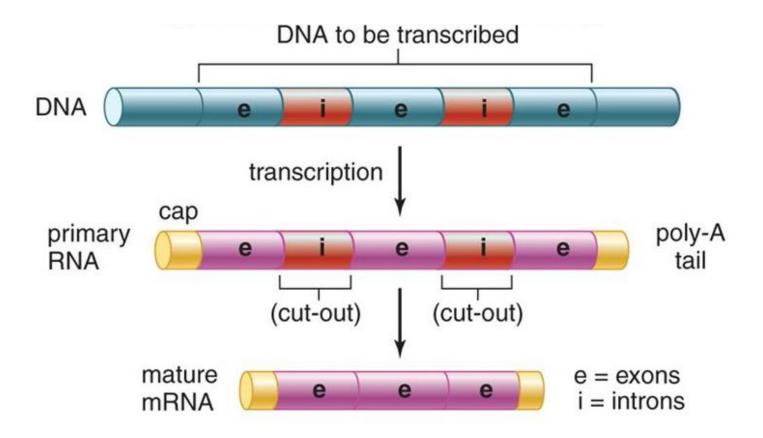
Potential Consequences on the RNA Level and using prediction tools

A. Variants altering the structure/ integrity:

pre-mRNA splicing

B. Variants altering the stability/ turnover:

C. Variants altering the translation dynamics:


D. Prediction Tools

E. Functional RNA studies

mRNA (UTRs, 3D, miRNA binding)

mRNA (codon usage, +/- ribosomal PS)

B. Variants altering the stability / turnover mRNA

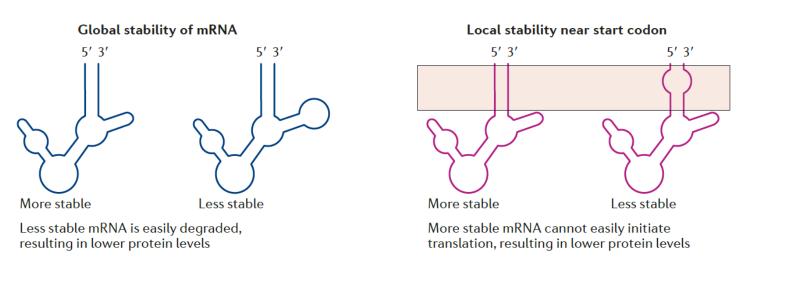
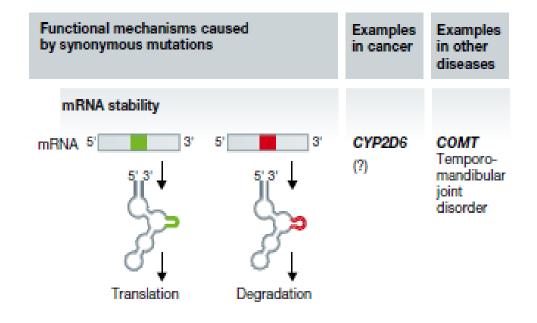

B. Variants altering the stability / turnover mRNA / Possible mechanisms

Figure 1. Schematic depiction of mutations within the 5'- and 3'-UTR.

Mutations can alter the secondary structure of the 5'- or 3'-UTR or occur in RNA binding protein (RBP) binding sites, upstream ORFs (uORF), internal ribosome entry sites (IRES; ITAF: IRES *trans*-acting factor), start codons of open reading frames (ORF), microRNA binding sites, or polyadenylation signals (polyA). These alterations can affect translation efficiency, mRNA stability, ORF length, or RBP interaction as well as cause alternative cleavage and polyadenylation (APA). Prominent examples of genes involved in tumorigenesis (green: induced, red: decreased) that exhibit mutations (red star) in such elements are illustrated.

B. Variants altering the stability / turnover mRNA / stability


Sauna et al.; 2012. Nat Rev Genet 12: 683-691

GFP library: 154 copies of GFP with random changes at synonymous sites:

- >250-fold variation in protein levels
- stability of mRNA secondary structure near ATG explained > 50%

B. Variants altering the stability / turnover mRNA / stability

 CYP2D6: synonymous coding variant causes decreased mRNA expression by altering the secondary structure of the mRNA leading to its degradation (Toscano et al.; 2006)

B. Variants altering the stability / turnover mRNA / stability

Cowden Syndrome–Affected Patients with *PTEN* Promoter Mutations Demonstrate Abnormal Protein Translation

Rosemary E. Teresi, Kevin M. Zbuk, Marcus G. Pezzolesi, Kristin A. Waite, and Charis Eng

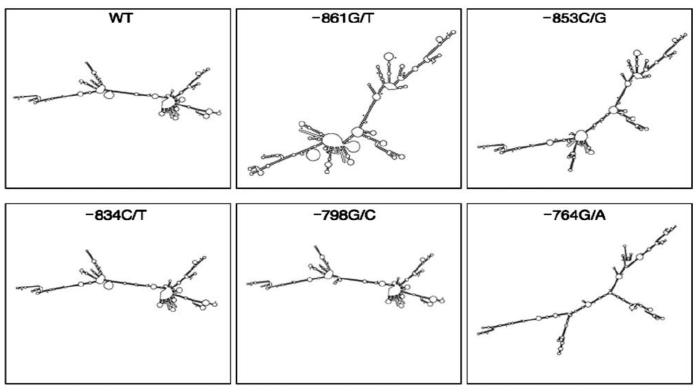
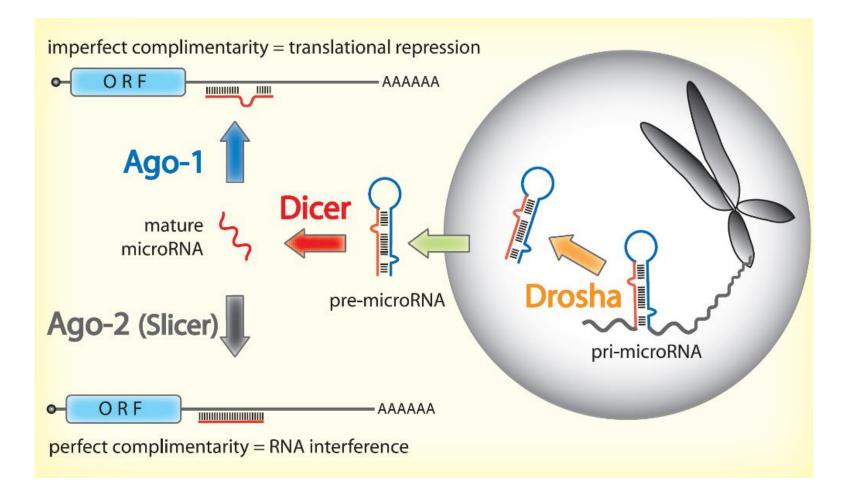
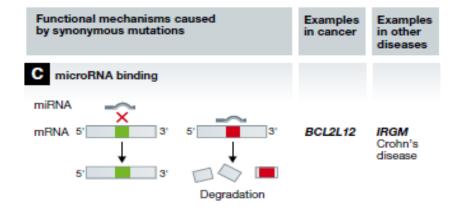



Figure 5. MFOLD-predicted secondary structures resulting from the five VUSs in patients with CS. The most-stable mRNA secondary structures predicted by MFOLD are illustrated here.


B. Variants altering the stability / turnover mRNA / miRNA binding

B. Variants altering the stability / turnover mRNA / miRNA binding

- 1.900 3.800 human miRNAs (Friedländer et al.; 2014 Genome Biology / Telonis et al.; 2015 Nucleic Acids Res.)
- ~ 60% (30-80%) of human genes are regulated by miRNAs (Friedmann et al.; 2008 Genome Res)
- 1 miRNA usually targets more than 100 human genes
- A gene may, in turn, be regulated by multiple miRNAs

Melanoma: synonymous coding variant causes increased mRNA stability of the oncogene BCL2L12 due to loss of the mi-R-671-5p target site (Gartner et al.; 2013)

B. Variants altering the stability / turnover mRNA / miRNA binding

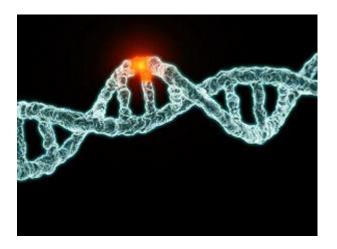

- 1.900 3.800 human miRNAs (Friedländer et al.; 2014 Genome Biology / Telonis et al.; 2015 Nucleic Acids Res.)
- ~ 60% (30-80%) of human genes are regulated by miRNAs (Friedmann et al.; 2008 Genome Res)
- 1 miRNA usually targets more than 100 human genes
- A gene may, in turn, be regulated by multiple miRNAs

	Table 4. miRNAs in human diseases	
Disease type	miRNA	Up/Down Regulation
Cardiac hypertrop	bhy	
	miR-23a, miR-23b, miR-24, miR-195, miR-199a, and miR-214	Up
Down syndrome		
	miR-99a, let-7c, miR-125b-2, miR-155 and miR-802	Up
Alzheimer		
	miR-9, miR-128a, miR-125b	Up
Rheumatic arthrit	is	
	miR-155, miR-146	Up
Systemic lupus ery	thematosus	
	miR-189, miR-61, miR-78, miR-21, miR-142-3p, miR 342, miR-299-3p, miR-198 and miR-298	Up
	miR-196a, miR-17-5p, miR- 409-3p, miR-141, miR-383, miR- 112, and miR-184	Down
Psoriasis		
	miR-203	Up

Cancer type	miRNA	Up/Down Regulation	
Breast			
	miR-21, miR-155, miR-23, and miR-191	Up	
	miR-205, miR- 145, miR-10b, and miR-125b	Down	
Ovary			
	miR-200a, miR-200c, and miR-141	Up	
	miR-199a, miR-140, miR-145, and miR125bl	Down	
Endometrioid ader	ocarcinoma		
	miR-205, miR155 miR 200a, 200b, 200c	Up	
	miR-193a, 193b	Down	

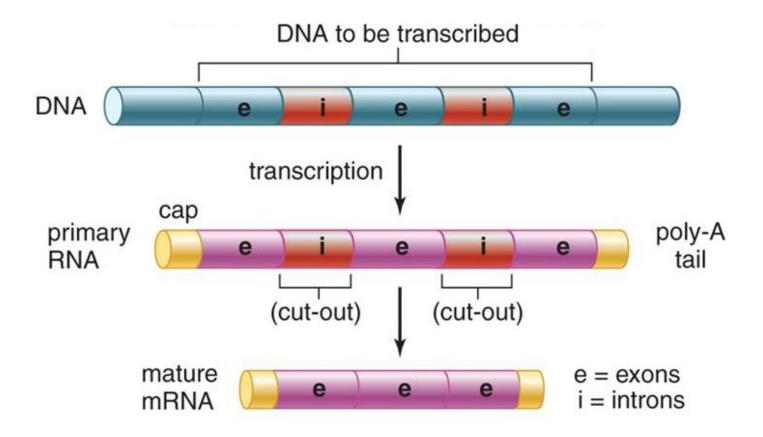
Avicenna Journal of Medical Biotechnology, Vol. 2, No. 4, October-December 2010

Potential Consequences on the RNA Level and using prediction tools

- A. Variants altering the structure/ integrity:
- B. Variants altering the stability/ turnover:

C. Variants altering the translation dynamics:

D. Prediction Tools

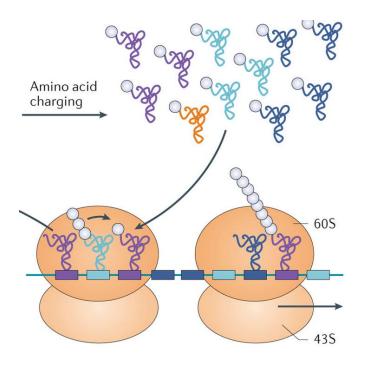

E. Functional RNA studies

pre-mRNA splicing

mRNA (UTRs, 3D, miRNA binding)

mRNA (codon usage, +/- ribosomal PS)

C. Variants altering the translation dynamics mRNA / Codon usage


C. Variants altering the translation dynamics mRNA / Codon usage

• <u>Codon Usage Bias</u>: although the genetic code is degenerate, synonymous codons are NOT used in equal frequencies

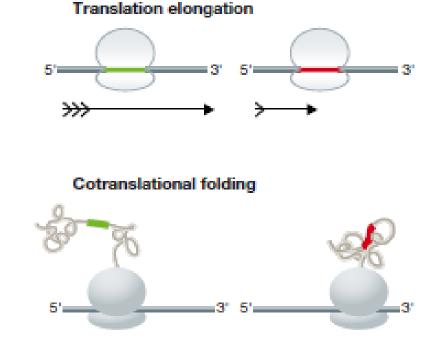
UUU F 0.46	UCU S 0.19	UAU Y 0.44	UGU C 0.46	
UUC F 0.54	UCC S 0.22	UAC Y 0.56	UGC C 0.54	
UUA L 0.08	UCA S 0.15	UAA * 0.30	UGA * 0.47	
UUG L 0.13	UCG S 0.05	UAG * 0.24	UGG W 1.00	
CUU L 0.13	CCU P 0.29	CAU H 0.42	CGU R 0.08	
CUC L 0.20	CCC P 0.32	CAC H 0.58	CGC R 0.18	
CUA L 0.07	CCA P 0.28	CAA Q 0.27	CGA R 0.11	
CUG L 0.40	CCG P 0.11	CAG Q 0.73	CGG R 0.20	
AUU I 0.36	ACU T 0.25	AAU N 0.47	AGU S 0.15	
AUC I 0.47	ACC T 0.36	AAC N 0.53	AGC S 0.24	
AUA I 0.17	ACA T 0.28	AAA K 0.43	AGA R 0.21	
AUG M 1.00	ACG T 0.11	AAG K 0.57	AGG R 0.21	
GUU V 0.18	GCU A 0.27	GAU D 0.46	GGU G 0.16	
GUC V 0.24	GCC A 0.40	GAC D 0.54	GGC G 0.34	
GUA V 0.12	GCA A 0.23	GAA E 0.42	GGA G 0.25	
GUG V 0.46	GCG A 0.11	GAG E 0.58	GGG G 0.25	
[Codon/a.a./fraction per codon per a.a.]				
-	s data from th	-	-	
-		-		

C. Variants altering the translation dynamics mRNA / Codon usage

<u>Codon Usage Bias</u>: although the genetic code is degenerate, synonymous codons are NOT used in equal frequencies

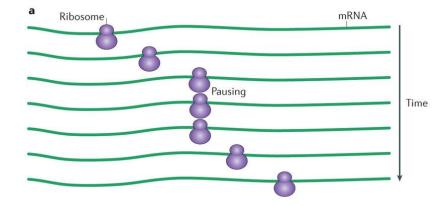
UUU F 0.46	UCU S 0.19	UAU Y 0.44		
UUC F 0.54	UCC S 0.22	UAC Y 0.56	UGC C 0.54	
UUA L 0.08	UCA S 0.15	UAA * 0.30	UGA * 0.47	
UUG L 0.13	UCG S 0.05	UAG * 0.24	UGG W 1.00	
CUU L 0.13	CCU P 0.29	CAU H 0.42	CGU R 0.08	
CUC L 0.20	CCC P 0.32	CAC H 0.58	CGC R 0.18	
CUA L 0.07	CCA P 0.28	CAA Q 0.27	CGA R 0.11	
CUG L 0.40	CCG P 0.11	CAG Q 0.73	CGG R 0.20	
AUU I 0.36	ACU T 0.25	AAU N 0.47	AGU S 0.15	
AUC I 0.47	ACC T 0.36	AAC N 0.53	AGC S 0.24	
AUA I 0.17	ACA T 0.28	AAA K 0.43	AGA R 0.21	
AUG M 1.00	ACG T 0.11	AAG K 0.57	AGG R 0.21	
GUU V 0.18	GCU A 0.27	GAU D 0.46	GGU G 0.16	
GUC V 0.24	GCC A 0.40	GAC D 0.54	GGC G 0.34	
GUA V 0.12	GCA A 0.23	GAA E 0.42	GGA G 0.25	
GUG V 0.46	GCG A 0.11	GAG E 0.58	GGG G 0.25	
[Codon/a.a./fraction per codon per a.a.]				
Homo sapien	s data from th	ne Codon Usage	e Database	

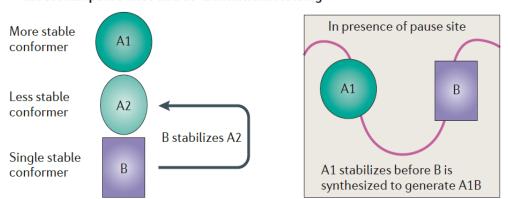
C. Variants altering the translation dynamics mRNA / Codon usage

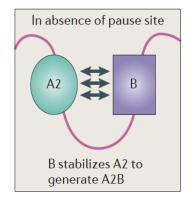

Codon Usage Bias: a • genetic code is dege synonymous codons used in equal freque

<u>Codon Usage Bias</u> : although the genetic code is degenerate, synonymous codons are NOT used in equal frequencies	UUU F 0.46 UUC F 0.54 UUA L 0.08 UUG L 0.13 CUU L 0.13 CUC L 0.20 CUA L 0.07 CUG L 0.40	UCC UCA UCG CCU CCC CCA CCG	S 0.19 S 0.22 S 0.15 S 0.05 P 0.29 P 0.32 P 0.28 P 0.11	UAU Y 0.44 UAC Y 0.56 UAA * 0.30 UAG * 0.24 CAU H 0.42 CAC H 0.58 CAA Q 0.27 CAG Q 0.73	UGU C 0.46 UGC C 0.54 UGA * 0.47 UGG W 1.00 CGU R 0.08 CGC R 0.18 CGA R 0.11 CGG R 0.20
🚰 Mutation Report		? ×	T 0.25	AAU N 0.47	AGU S 0.15
Report for mutation NM_001009944.2(PKD1):c.8151	C>A		T 0.36	AAC N 0.53	AGC S 0.24
Warning: This report is based on knowledge and data that are not firmly established decisions must not be made on the basis of this report.	l. Consequently, medical		T 0.28 T 0.11	AAA K 0.43 AAG K 0.57	AGA R 0.21 AGG R 0.21
PKD1 Variation					
Class 3-Unknown pathogenicity			A 0.27	GAU D 0.46	GGU G 0.16
Transversion from C to A in exon 22.			A 0.40	GAC D 0.54	GGC G 0.34
Synonymous substitution. Codon CTC changed to CTA. Frequencies of Leu-codons in the human genome: CTC (0.197) / CTA (0.07) This variant does not alter the protein sequence.			A 0.23 A 0.11	GAA E 0.42 GAG E 0.58	GGA G 0.25 GGG G 0.25
HGV5 v2.0 Nomenclature					
cDNA Level: NM_001009944.2:c.81 gDNA Level: Chr16(GRCh37):g.2154 Protein Level: p.= (p.1eu2717Leu)			-	codon per a.a ne Codon Usage	-

©Interactive Biosoftware - Created by Alamut Visual v.2.6 on 19.10.2016

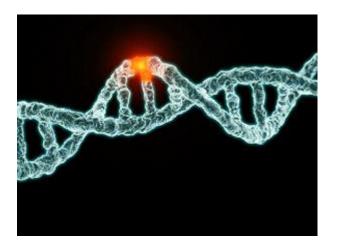

C. Variants altering the translation dynamics mRNA / translational speed


- <u>Codon Usage Bias</u>: although the genetic code is degenerate, synonymous codons are NOT used in equal frequencies
- Variants can alter translational speed (if a abundant codon is changed to a rare one) leading to a change in cotranslational protein folding (Yu et al, 2015)



C. Variants altering the translation dynamics mRNA / ribosomal pause sites

- Removal or introduction of a ribosomal pause site can lead to an alternative protein conformation
- Domains can fold differently by experiencing stabilization from neighboring domains (Sauna & Kimchi-Sarfaty, 2011)



Ribosomal pause sites and co-translational folding

C. Variants altering the translation dynamics mRNA / Codon usage examples

Disease	Gene	Reference SNP	Location (sequence	Codon change	
		number	range of exon)	From	То
Pulmonary sarcoidosis	Caspase recruitment domain 15 (CARD15)	rs1861759	mRNA position 1866, exon 4 (752–2567)	CGT	CGG
Haemophilia B	F9	Not known	Exon 5	GTG	GTA
Non-small-cell lung carcinoma	Epidermal growth factor receptor (EGFR)	rs2293347	mRNA position 3228, exon 27 (3193–3360)	GAC	GAT
Cervical and vulvar cancer	Interleukin-2 (IL2)	rs2069763	mRNA position 169, exon 1 (1–202)	CTG	СТТ
Adult and child attention deficit/ hyperactivity disorder (ADHD)	Neurotrophin 3 (NTF3)	rs6332	mRNA position 502, exon 2b (230–1335) or position 368, exon 2a (1–1168) (different splice variants)	CCG	CCA

Potential Consequences on the RNA Level and using prediction tools

- A. Variants altering the structure/ integrity:
- B. Variants altering the stability/ turnover:
- C. Variants altering the translation dynamics:

D. Prediction Tools

E. Functional RNA studies

pre-mRNA splicing

mRNA (UTRs, 3D, miRNA binding)

mRNA (codon usage, +/- ribosomal PS)

pre-mRNA splicing

Tool	Input	Output	Interpretation	Method
Splice-Site Analyzer Tool	Single/multiple sequences (5': 9 bp (-3 to +6); 3': 15 bp (-14 to +1))	S & S score (0–100)	Higher score implies a more similar ss sequence with the consensus sequence	
NetGene2	Single sequence (200 bp < length < 80,000 bp)	Confidence score (0–1)	Higher score implies a higher confidence of true site	Neural Networks
NNSplice	Single/multiple sequences	Score (0–1)	Higher score implies greater potential for splice site	Neural Networks
GENSCAN	Single sequence ≤1 million bp	Probability score (0-1)	Higher score implies a higher probability of correct exon	
SpliceView	Single sequence ≤31,000 bp	S & S score (0–100)	Higher score implies a more similar ss sequence with the consensus sequence	
Hbond	Single/multiple 11 bp sequences (-3 to +8) containing GT in +1/+2 or one genomic sequence	Hbond score	Higher score implies a stronger capability of forming H-bonds with U1 small nuclear RNA	
MaxEntScan	Single/multiple sequences (5': 9 bp (-3 to +6); 3': 23 bp (-20 to +3))	Maximum entropy score (log odds ratio)	Higher score implies a higher probability of the sequence being a true splice site	Maximum entropy principle
SplicePredictor	Single/multiple sequences	*-Value (3–15) determined by <i>P</i> , ρ, and γvalues	Higher value implies greater reliability of the predicted splice site	
Automated splice site analyses	Mutation to be analyzed and the reference sequence	Information contents Ri	Color coded by direction and type of change in Ri	
SplicePort	Single/multiple sequences ≤30,000 bp	Feature generation algorithm score	Higher score implies a more precise prediction of splice site	
Human Splicing Finder	Single sequence ≤5,000 bp	S & S score (0-100)	Higher score implies greater potential for splice site	Position dependent logic
CRYP-SKIP	Single/multiple sequences ≤4,000 bp containing one exon in upper case and flanking intronic sequence ≥4 bp in lower case	Probability of cryptic ss activation (0–1)	Higher value implies a higher probability of cryptic ss activation as opposed to exon skipping	
SROOGLE	Target exon along with two flanking introns	Different scores with their percentile scores (0–1)	Higher percentile score implies a higher ranking of the ss within precalculated distributions	
AASsites	Single sequence containing the SNP(s) and the Ensembl gene ID to which the SNP(s) belong(s)	Classification of the probability for a change in splicing	Probable, likely, or unlikely	
Spliceman	Single/multiple sequences with one mutation and ≥5 bp in each side of the mutation	L1 distance and percentile rank	Higher percentile rank implies a higher likelihood the point mutation is to disrupt splicing	

Review of user orientated in silico tools for splicing: Xueqiu et al.; Genetics in Medicine (2013) 16

pre-mRNA splicing

H	uma	nS	Splic	ing F	inde				
Home	Analyse Nou	u I	Nhat's New?	Help & Tutorials	Credits	& Publications	Our Other Tools	Contact Us	
Type of signal	Algorithm type	Predic	tion algorithm	CV threshold	Variation threshold		c	Comment	
Donor or acceptor	Position Weight Matrices		HSF	65	+/-10%	Consensus values go from 0 to 100 for HSF, -20 to +20 for MaxEnt. threshold is defined at 65 for HSF, 3 for MaxEnt. This means that every si with a score above the threshold is considered to be a splice site (donc acceptor). When a mutation occurs, if the WT score is above the threshold and the s variation (between WT and Mutant) is under -10% for HSF (-30% for Max			
splice site	Maximum Entropy	Ma	axEntScan	3	+/-30%	we consider t WT score is	that the mutation bread under the threshold a	aks the splice site. In the other case, if the and the score variation is above +10% for der that the mutation creates a new splice	
Branch point site	Position Weight Matrices		HSF	67	+/-10%	Consensus values go from 0 to 100 and the threshold is defined at 67. means that every signal with a score above 67 is considered to be a poter branch point. When a mutation occurs, if the WT score is above 67 and the score varia (between WT and Mutant) is under -10% we consider that the mutation bre the branch point.			
Exonic Splicing Enhancers (ESE)	Position Weight Matrices	HSF ESE Finder	9G8 Tra2-β SF2/ASF SF2/ASF(IgM) SC35 SRp40 SRp55	59.24 75.96 72.98 70.51 75.05 78.08 73.86		the branch point. Consensus values go from 0 to 100 and the threshold is defined d each algorithm. Every signal with a score above the defined considered to be a potential ESE. When a mutation occurs, if the WT score is above the thresh Mutant score is under it we consider that the mutation breaks the E		a score above the defined threshold is VT score is above the threshold and the	
	Motif Comparison method		SCUE ESE examers	Present/Absent		When a muta	ation occurs, if the W	pase, it is considered to be a potential ESE. T motif is present in the database and the nat the mutation breaks the ESE.	
	Position	HSF	hnRNP-A1	65.476	Yes/No	each algorith	m. Every signal with	and the threshold is defined differently for a score above the defined threshold is	
Exonic Splicing Silencers	Weight Matrices	Si	oni motifs	60		When a mutat		score is under the threshold and the Mutant ne mutation creates a new ESS.	
(ESS)			ecamers from ang et al.			If the tested motif exists in the database, it is considered to be a p When a mutation occurs, if the WT motif is absent in the data Mutant one is present we consider that the mutation creates a new		T motif is absent in the database and the	
Both ESEs	s method Octamers		Present/Absent		or ESS. When a muta	ation occurs, if the W	base, it is considered to be a potential ESE T motif is present in the database and the		
and ESSs			Sequences IIEs Hexamers			WT motif is at		hat the mutation breaks the ESE. Else if the and the Mutant one is present we consider S.	

HSF3 Pro takes both the U2 and U12 introns into account

http://www.umd.be/HSF3/

pre-mRNA splicing

When to recommend or perform a cDNA study ?

Pyrimidin to purin change

- Weakening of SA site
- Possible de novo SA site

How to weight different algorithms?

Important:

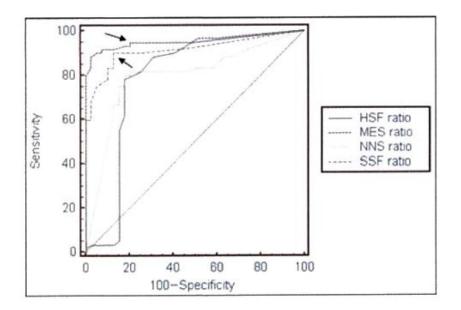
Lab should install rules for prediction / reporting

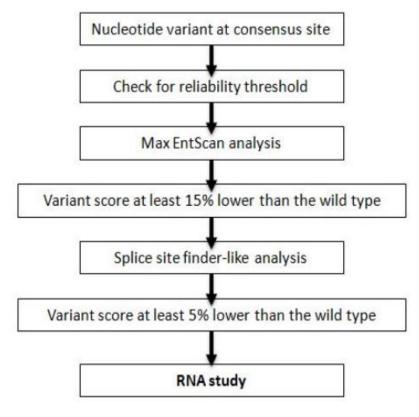
SpliceSiteFinder-like	[0-100]			ľ				
MaxEntScan	[0-12]				_			
NNSPLICE 🗧	[0-1]							
GeneSplicer 🚽	[0-15]							
Human Splicing Finder	[D-100]							
		868-30	868-20	868-10		880	890	900
-	•		сесаасасттс		3CAG <mark>GICI</mark>	TCTATTACITU	CACGAGCATU	TCGAGAAGGU
SpliceSiteFinder-like	[0-100]	1						
MaxEntScan	[0-16]							
NNSPLICE 3	[0-1]							
GeneSplicer 💙	[0-15]							
Human Splicing Finder	[0-100]							
Branch Points	[D-100]							
SpliceSiteFinder-like	[D-100]							
MaxEntScan	[0-12]							
NNSPLICE	[0-1]							
GeneSplicer 💙 👘	[0-15]							
Human Splicing Finder	· · · · · · · · · · · · · · · · · · ·							
		868-30	868-20	868-10	868 60 A C 07 0 7 7	880	890	
	1 -	-	CCCAACAGTTTC	TCHIGICAG	JCAG <mark>BICI</mark>	ICTATIACIO	JACGAGCATCT	TCGAGAAGGG
SpliceSiteFinder-like	[0-100]	1			<u> </u>			
MaxEntScan	[0-16]							V
NNSPLICE 3'	[0-1]			!				Ω
GeneSplicer 🛩	[0-15]							
Human Splicing Finder	[0-100]							interactive
Branch Points	[0-100]	Ц		L		υЦ		biosoftware

pre-mRNA splicing

RESEARCH ARTICLE

Human Mutation


Guidelines for Splicing Analysis in Molecular Diagnosis Derived from a Set of 327 Combined *In Silico/In Vitro* Studies on *BRCA1* and *BRCA2* Variants


Claude Houdayer,^{1*} Virginie Caux-Moncoutier,¹ Sophie Krieger,² Michel Barrois,³ Françoise Bonnet,⁴ Violaine Bourdon,⁵ Myriam Bronner,⁶ Monique Buisson,⁷ Florence Coulet,⁸ Pascaline Gaildrat,⁹ Cédrick Lefol,¹⁰ Mélanie Léone,¹¹ Sylvie Mazoyer,⁷ Danielle Muller,¹² Audrey Remenieras,³ Françoise Révillion,¹³ Etienne Rouleau,¹⁰ Joanna Sokolowska,⁶ Jean-Philippe Vert,¹⁴ Rosette Lidereau,¹⁰ Florent Soubrier,⁸ Hagay Sobol,⁵ Nicolas Sevenet,⁴ Brigitte Bressac-de Paillerets,^{3,15} Agnès Hardouin,² Mario Tosi,⁹ Olga M. Sinilnikova,^{7,11} and Dominique Stoppa-Lyonnet^{1,16}

Comprehensive *in silico* analysis (MES, SSF, NNsplice, HSF; ESEfinder, Rescue-ESE) Comprehensive *in vitro* mRNA analysis (cDNA: PAX + cell culture; mini-gene) Comparison of different *in silico* tools with regard to specificity and sensitivity

pre-mRNA splicing

Figure 1. ROC plots for the four *in silico* tools. The ROC graph is a plot of all sensitivity/specificity pairs resulting from continuously varying the decision threshold over the entire set of results observed. For each prediction tool, the ROC curve plots sensitivity versus false-positive rate 100-specificity) for the complete range of decision thresholds. A perfect test has a ROC curve that passes through the upper left corner, where both sensitivity and specificity are 100%. Hence, MaxEntscan and Splice Site Finder-like provide the best ROC curves and also show excellent accuracy with areas under the curve of 0.956 and 0.914, respectively (see text for details). The points corresponding to decision thresholds of 15% and 5% are marked with arrowheads on the MES and the SSF curves, respectively.

MES+SSF: 96% sensitivity and 83% specificity

D. Prediction Tools pre-mRNA splicing

Take alternative splicing into account

SpliceSiteFinder-like	[0-100]							
MaxEntScan 👝 🖡	[0 <mark>-</mark> 12]	BRC	42: с.	68-7T>	A(IVS2)			
NNSPLICE	[0]1]							
Human Splicing Finde	r[0 <mark>-</mark> 100]							
Reference Sequence	68-20 AGGTGGGATTTT	68-10 68 FTTTTTAAATAG <mark>A</mark> T	TTAGGA	80 CCAATAAGT	90 CTTAATTGGI	<u>100</u>	110 TCTTCAGAAGC	<u>120</u> TCCACCCTATAA
SpliceSiteFinder-like	[0-100]	87.9						
MaxEntScan 👝 🕇	[0-16]	6.1	2.2=					
NNSPLICE 3	[0-1]	0.9						
Human Splicing Finde	r[0- 1 00]	80.6						
Branch Points] _[0-100] [000 0 0		00 00	00	00 00		
SpliceSiteFinder-like	[d <mark>.</mark> 100]							
MaxEntScan 💼 🕇	[0 <mark>-</mark> 12]							
NNSPLICE	[0 <mark>-</mark> 1]							
Human Splicing Finde	r[0 <mark>-</mark> 100]				I			
Mutated Sequence	68-20 AGGTGGGATTTT	68-10 68 [TTTTAAAATAG <mark>AT</mark>]	TTAGGA	80 CCAATAAGT	90 CTTAATTGGI	100 TTGAAGAACTT	110 TCTTCAGAAGC	120 TCCACCCTATAA
SpliceSiteFinder-like	[0-100]	82.9						
MaxEntScan 🚗 🖡	[0-16]	4.6■	1.0-					
NNSPLICE 5	[0-1]	0.7						
Human Splicing Finde	r[0- 1 00]	78. 5 <mark>.</mark>						Interactive
Branch Points] _[0-100] [0000 0 0		00 00		00 00		Biosoftware

Santos (2014) *J Mol Diagn* **16:** 324: Houdayer (2012) *Hum Mutat* **33:** 1228: Olfson (2015) *PLoS One* **10:** e013519: Alternative splicing of ex3, no segregation with disease

Increase in delta3 alternative splicing Co-occurs with deleterious BRCA2 variants

ENIGMA: > 30% skipped transcript

pre-mRNA splicing

Version 1.1: 26 March 2015

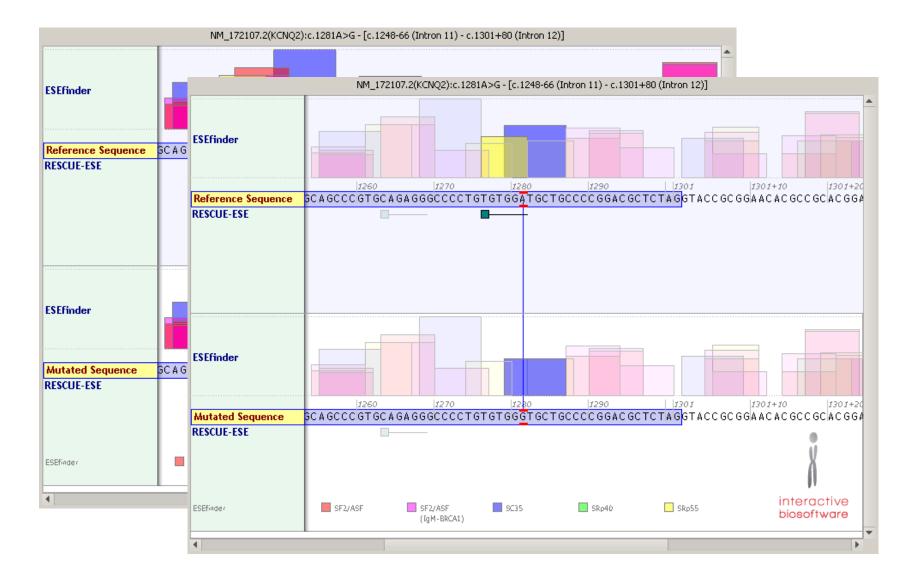
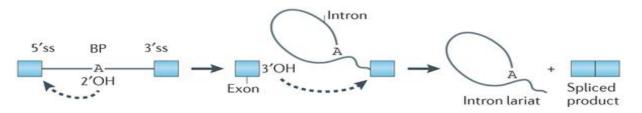

ENIGMA (BRCA)

Table 5: BRCA1 and BRCA2 exon boundary variants predicted or known to lead to naturally occurring in-frame RNA isoforms that may rescue gene functionality. Variants at these positions should be considered class 3 (uncertain) unless proven otherwise.


ιJ

Gene	Alternative Splicing Event	Variants Implicated	Rationale
	∆8р	c.442-1 (IVS7-1) c.442-2 (IVS7-2)	BRCA1 exon 8 acceptor site is an experimentally validated tandem acceptor site (NAGNAG) subject to alternative splicing (Colombo et al., 2014). c.442-1,-2 variants are predicted to inactivate the 5' acceptor site, but not the 3' acceptor site, thus producing Δ 8p transcripts.
BRCA1	Δ9,10	c.548-1 (IVS8-1) c.548-2 (IVS8-2) c.593 to non-G c.593+1 (IVS9+1) c.593+2 (IVS9+2) c.594-1 (IVS9-1) c.594-2 (IVS9-2) ^a c.670 to non-G c.670+1 (IVS10+1) c.670+2 (IVS10+2)	Carriers of these variants are predicted to produce normal (or increased) levels of <i>BRCA1</i> $\Delta(9,10)$, a major in-frame alternative splicing event (Colombo et al., 2014).
	∆13p	c.4186-1 (IVS12-1) c.4186-2 (IVS12-2)	BRCA1 exon 13 acceptor site is an experimentally validated tandem acceptor site (NAGNAG) subject to alternative splicing (Colombo et al., 2014). c.4186-1,-2 variants are predicted to inactivate the 5' acceptor site, but not the 3' acceptor site, thus producing Δ13p transcripts
	∆14p	c.4358-1 (IVS13-1) c.4358-2 (IVS13-2)	BRCA1 exon 14 acceptor site is an experimentally validated tandem acceptor site (NAGNAG) subject to alternative splicing (Colombo et al., 2014). c.4358-1,-2 variants are predicted to inactivate the 5' acceptor site, but not the 3' acceptor site, thus producing Δ14p transcripts
BRCA2	Δ12	c.6842-1 (IVS11-1) c.6842-2 (IVS11-2) c.6937 to non-G c.6937+1 (IVS12+1) c.6937+2 (IVS12+2)	Carriers of these variants are predicted to produce exon12 skipping. BRCA2 ∆12 is a naturally occurring in-frame splicing event (ENIGMA Splicing Working group, unpublished data). BRCA2 exon12 is functionally redundant (Li et al., 2009)
			clinical characteristics inconsistent with a high risk of cancer expected for a pathogenic <i>BRCA1</i> published genetic and pathology data from ENIGMA.

D. Prediction Tools pre-mRNA splicing / ESE ESS ISE ISS

pre-mRNA splicing / Branchpoint

RNA SPLICING BRANCHPOINT DETECTION SOFTWARE TOOLS | GENOME ANNOTATION

GAEM / Genetic Algorithm-based weighted average Ensemble ... Allows branchpoint (BP) determination. GAEM is an ensemble of learning method that integrates several features and multiple classifiers to construct BP pr

LREM / Logistic Regression-based Ensemble Method Allows branchpoint (BP) prediction. LREM is an ensemble of learning scheme that integrates different features and different classifiers to build BP prediction

LaBranchoR / Long short-term memory network Branchpoint Re... Provides accurate genome-wide branchpoint annotations. LaBranchoR is a computational method that disregards noise in the experimental data lead

branchpointer

Allows users to identify branchpoints throughout the human genome thanks to gene annotations. Branchpointer generates branchpoint window regions

D. Prediction Tools pre-mRNA splicing / Branchpoint

HOME

Search

New Results

A sequence-based, deep learning model accurately predicts RNA splicing branchpoints

Joseph M. Paggi, Gill Bejerano doi: https://doi.org/10.1101/185868 This article is a preprint and has not been peer-reviewed [what does this mean?].

Abstract Info/History Metrics Preview PDF

Abstract

Experimental detection of RNA splicing branchpoints, the nucleotide serving as the nucleophile in the first catalytic step of splicing, is difficult. To date, annotations exist for only 16-21% of 3' splice sites in the human genome and even these limited annotations have been shown to be plagued by noise. We develop a sequence-only, deep learning based branchpoint predictor, LaBranchoR, which we conclude predicts a correct branchpoint for over 90% of 3' splice sites genome-wide. Our predicted branchpoints show large agreement with trends observed in the raw data, but analysis of conservation signatures and overlap with pathogenic variants reveal that our predicted branchpoints are generally more reliable than the raw data itself. We use our

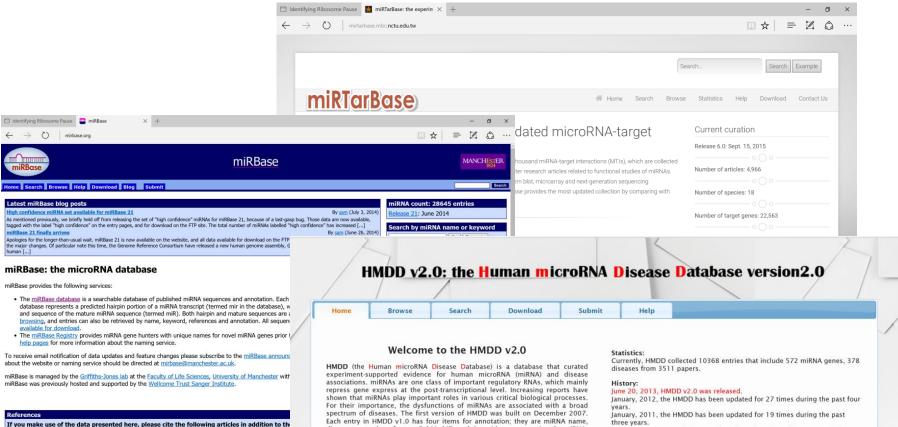
miRNA prediction

Gene: SLC2A1 - Transcript: NM_006516.2 - Variant: c.*255T>C - 3' UTR: 1666 bp

Good mirSVR score, Conserved miRNA
 Good mirSVR score, Non-conserved miRNA
 Non-Good mirSVR score, Conserved miRNA
 Non-Good mirSVR score, Non-Conserved miRNA

- Not Target, Source: microRNA.org

Removed (wild-type)


miRNA name	Targets	Position in 3' UTR	Alignment Length	Alignment Score	Identity	Similarity
<u>hsa-miR-495</u>	00	c.*236_*257	6	120.00	100.00%	100.00%
<u>hsa-miR-7-1*</u>		c.*236_*257	6	120.00	100.00%	100.00%
<u>hsa-miR-7-2*</u>	00	c.*236_*257	6	120.00	100.00%	100.00%

Modified (wild-type mutant)

miRNA name	Targets	Position in 3' UTR	Alignment Length	Alignment Score	Identity	Similarity
<u>hsa-miR-3065-5p</u>		c.*236_*258	16	154.00 🗆 122.00	81.25% 75.00%	93.75% 🗆 87.50%
<u>hsa-miR-548p</u>	00	c.*236_*257	17	138.00 154.00	64.71% 70.59%	76.47%
<u>hsa-miR-340 ⁽¹⁾</u>	00	c.*244_*266 □ c.*245_*266	16 🗆 19	135.00 🗆 132.00	62.50%	87.50% 🗆 68.42%

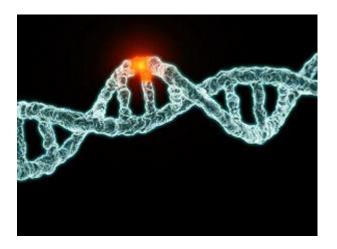
Added (mutant)									
miRNA name	Targets	Position in 3' UTR	Alignment Length	Alignment Score	Identity	Similarity			
<u>hsa-miR-31</u>	_	c.*238_*257	18	121.00	61.11%	77.78%			
<u>hsa-miR-3121</u>	-	c.*240_*261	6	120.00	100.00%	100.00%			
hsa-miR-545	_	c.*235 *258	15	126.00	73.33%	73.33%			

miRNA prediction

miRBase: annotating high confidence microRNAs using deep sequencing data. Kozomara A. Griffiths-Jones S.

disease name, the reference PubMed ID, and the evidence supporting the miRNAassociation from the original paper. During the past five years, we updated HMDD for more than 30 times. HMDD v2.0 presents more detailed and comprehensive annotations to the human miRNA-disease association data, including miRNA-disease association data from the evidence of genetics, epigenetics, circulating miRNAs, and miRNA-target interactions. In addition, a "submission" function was implemented in the version 2.

three years.


October, 2008, an analysis paper based on the miRNA-disease association data in the HMDD database was published on PLoS ONE. December, 2007, the original HMDD database was released.

Contact us

Dr. Qinghua Cui, 38 Xueyuan Rd, Department of Biomedical Informatics, Peking University Health Science Center, Beijing 100191, China Email: cuiginghua@hsc.pku.edu.cn Homepage: http://www.cuilab.cn/

Last Update: Jun-14, 2014

Potential Consequences on the RNA Level and using prediction tools

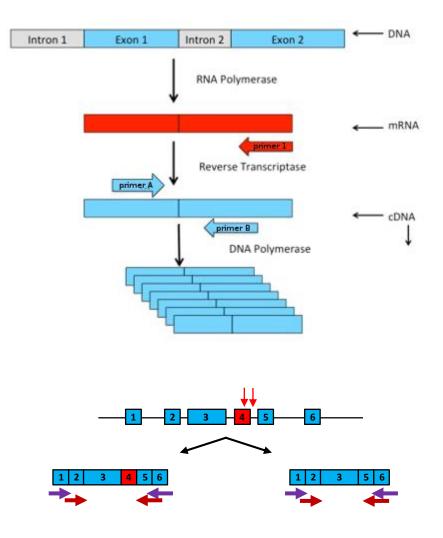
- A. Variants altering the structure/ integrity:
- B. Variants altering the stability/ turnover:
- C. Variants altering the translation dynamics:

D. Prediction Tools

E. Functional RNA studies

pre-mRNA splicing

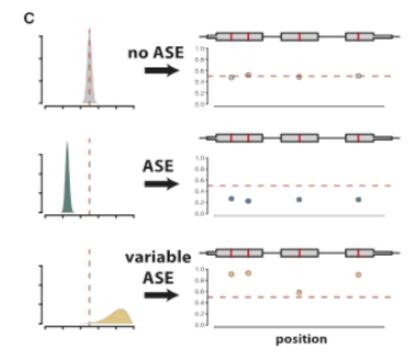
mRNA (UTRs, 3D, miRNA binding)


mRNA (codon usage, +/- ribosomal PS)

RT-PCR approach

Assess allele-specific expression

Quantify (alternative) transcripts

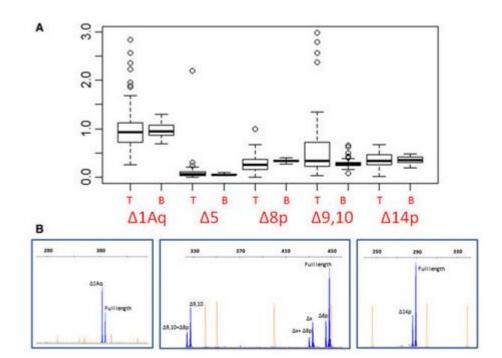


Strategies for RNA Analysis

RT-PCR approach

Assess allele-specific expression

Quantify (alternative) transcripts

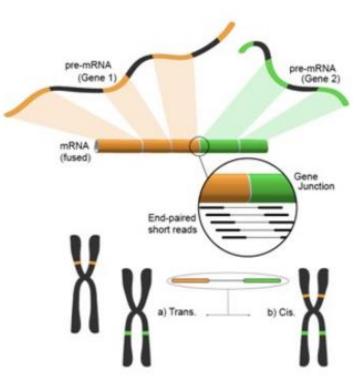


Strategies for RNA Analysis

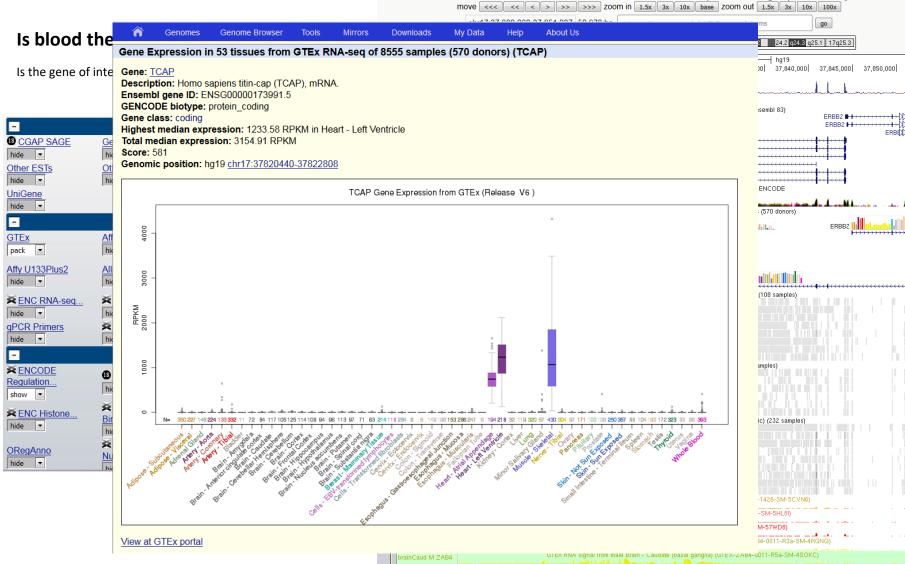
RT-PCR approach

Assess allele-specific expression

Quantify (alternative) transcripts



Strategies for RNA Analysis


RT-PCR approach

Assess allele-specific expression

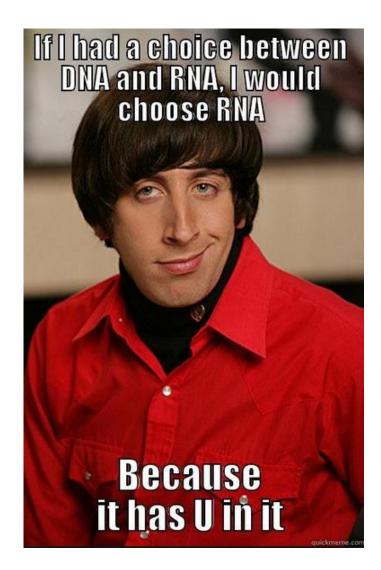
Quantify (alternative) transcripts

UCSC Genome Browser on Human Feb. 2009 (GRCh37/hg19) Assembly

Sources of RNA material suitable for analysis

- cell culture
- blood (heparin, citrate, or EDTA)
- tissue samples (normal, FFPE)

Dealing with NMD


- Cycloheximide: concentration between 100-250 mg/ml and an incubation time of at least 4 hours
- Puromycin: concentration of 10-20 mg/ml and a 5-hour incubation time is commonly used

In addition to at least 10 wildtype controls in the same assay—to facilitate the interpretation of the relevance of naturally occurring isoforms—the inclusion of a cell line with a validated NMD-prone variant is highly recommended in order to verify the fidelity of the inhibition process (positive control)

Strategies depending on expected effect

- (RT) PCR-amplified cDNA fragments from fresh blood, PAX RNA, or lymphocyte cultures
- ASE-assay: The determination of allele-specific expression (ASE) is a powerful tool for assessing the relevance of suspected pathogenic alleles. In single-nucleotide extension assays such as SNuPE, SNaPshot and pyrosequencing or in MALDI-ToF mass spectrometry, ASE analysis takes advantage of a previously detected germline single-nucleotide variant (SNV) as a proxy for allelic expression.
- Real-Time Quantitative Reverse Transcription PCR (RT-qPCR) or allele-specific expression (ASE) for promotor variants.

Potential Consequences on the RNA Level and using prediction tools

