
benet-pages@mgz-muenchen.de

Anna Benet-Pagès Prague 08.11.2017

CTTTGACCTOSCCTAAACTOSCGGOGCGCCCGACTCTCCCCCCCTTTTTGCTCCACCTA

A 📕 C 📕 G 📒 T 📕

CAATCCTCTCATTCCCATGGGGCTCATGGTCCAAACAATTGGAGCTCCCCGTGCCTTCTCCTCT

New generations?

2nd generation sequencing : short-reads

Illumina NovaSeq

3rd generation sequencing : long-reads

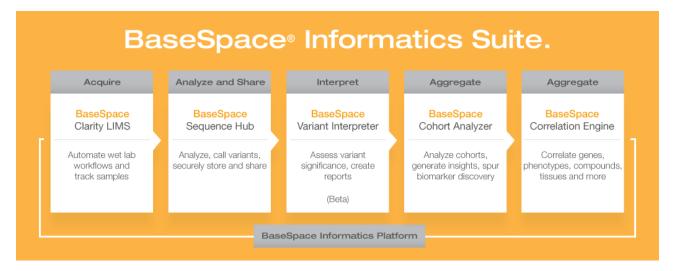
Oxford nanopore

MinION GridION PromethION SmidgION

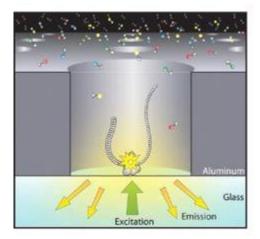
3rd generation mapping

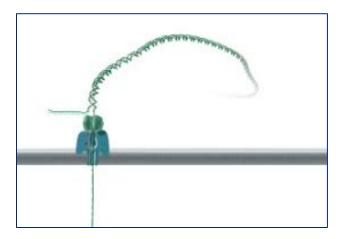
Bionano genomics

Pacbio

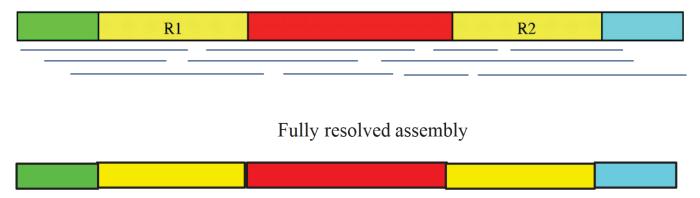


Sequel System PacBio RS II


Short read sequencing : Illumina – NovaSeq


Estimated Sample Throughput for Key Applications***

			NovaSeq 6000 System				
Flow Cell Type				S2		S4	
Human Genomes per Run		~8		~16		~48	
Exomes per Run		~80		~160			
Transcriptomes per Run		~64		~128			
Run Time							
2 × 50 bp	~13 hr	~16 hr			N/A		
2 × 100 bp	~18 hr	~25 hr		5 hr			
2 × 150 bp	~24 hr		~36 hr		~44 hr		

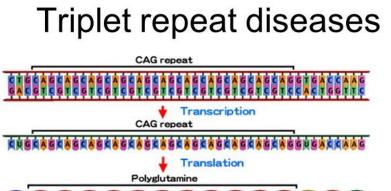

Long read sequencing : PacBio – Oxford nanopore

• Long read can span over repeated region

True structure of genomic region

Long-Read Sequencing Data Enables Structural Variant Discovery For Clinical And Disease Research

Contributed Commentary By Luke Hickey


September 11, 2017 | In recent years, scientists have become increasingly aware of the clinical implication of structural variants in the human genome. These larger variants, typically defined as >50 bp, are known to cause many genetic conditions, including fragile X syndrome, Duchenne muscular dystrophy, ALS, and Tay-Sachs disease. However, due to their size, structural variants have not been as easy to study as single-nucleotide variants using short-read sequencing methods. Whether they are insertion variants that are too lengthy to span with such methods, repetitive regions that create mapping ambiguity for short reads, or GC-rich regions that challenge technologies with a systematic coverage bias, these important genomic elements have been missed by most efforts to sequence the human genome.

The advent of single molecule, real-time sequencing, with average read lengths exceeding 12 kb, has allowed scientists to reliably detect structural variation for the first time. These latest studies have shown that previous human genome data sets have dramatically underrepresented the number of structural variants—along with their effect on health and disease.

Genet Med. 2017 Jun 22. doi: 10.1038/gim.2017.86. [Epub ahead of print]

Long-read genome sequencing identifies causal structural variation in a Mendelian disease.

<u>Merker JD</u>^{1,2}, <u>Wenger AM</u>³, <u>Sneddon T</u>², <u>Grove M</u>², <u>Zappala Z</u>^{1,4}, <u>Fresard L</u>¹, <u>Waggott D</u>^{5,6}, <u>Utiramerur S</u>², <u>Hou Y</u>¹, <u>Smith KS</u>¹, <u>Montgomery SB</u>^{1,4}, <u>Wheeler M</u>^{5,6}, <u>Buchan JG</u>^{1,2}, <u>Lambert CC</u>³, <u>Eng KS</u>³, <u>Hickey L</u>³, <u>Korlach J</u>³, <u>Ford J</u>^{4,5,7}, <u>Ashley EA</u>^{2,4,5,6}.

Disease	Mutation/ repeat unit	Gene name (protein product)	Putative function	Normal repeat length	Pathogenic repeat length
Diseases	that are cause	d by loss of protein fu	Inction		
FRDA	(GAA) _n	FRDA (frataxin)	Mitochondrial iron metabolism	6–32	200–1,700
FRAXA	(CGG) _n	FMR1 (FMRP)	Translational regulation	6–60	>200 (full mutation)
FRAXE	(CCG) _n	FMR2 (FMR2)	Transcription?	4–39	200–900
Diseases	that are cause	d by altered protein fu	unction		
SCA1	(CAG)	SCA1 (ataxin 1)	Transcription	6–39	40-82
SCA2	(CAG)	SCA2 (ataxin 2)	RNA metabolism	15–24	32-200
SCA3 (MJD)	(CAG) _n	SCA3 (ataxin 3)	De-ubiquitylating activity	13–36	61–84
SCA6	(CAG) _n	CACNA1A (CACNA1 _a)	P/Q-type α1A calcium channel subunit	4–20	20–29
SCA7	(CAG)	SCA7 (ataxin 7)	Transcription	4–35	37–306
SCA17	(CAG) _n	SCA17 (TBP)	Transcription	25–42	47-63
DRPLA	(CAG)	DRPLA (atrophin 1)	Transcription	7–34	49-88
SBMA	(CAG) _n	AR (androgen receptor)	Steroid-hormone receptor	9–36	38-62
HD	(CAG) _n	HD (huntingtin)	Signalling, transport, transcription	11–34	40–121
Diseases	that are cause	d by altered RNA fund	ction		
DM1	(CTG)	DMPK (DMPK)	RNA-mediated	5–37	50-1,000
DM2	(CCTG)	<i>ZNF</i> 9 (ZNF9)	RNA-mediated	10–26	75-11,000
FXTAS	(CGG) _n	FMR1 (FMRP)	RNA-mediated	6–60	60–200 (premutation)
Diseases (of unknown pa	thogenic mechanism	(s)		
SCA8	(CTG) _n	SCA8 (transcribed/ untranslated)	Unknown	16–34	>74
SCA10	(ATTCT)	Unknown	Unknown	10–20	500-4,500
SCA12	(CAG) _n	PPP2R2B (PPP2R2B)	Phosphatase regulation	7–45	55–78
HDL2	(CTG)	JPH3 (junctophilin 3)	PM/ER junction protein	7–28	66-78

CACN41A, calcium channel, voltage-dependent, P/Q type, or1A subunit; DMPK, dystrophia myotonica protein kinase; DRPLA, dentatorubrai-paliidoluysian atrophy; DM, dystrophia myotonica; ER, endoplasmic reticulum; FRDA, Friedreich ataxia; FMRP, fragile X mental retardation protein; FMR1, fragile X mental retardation 1; FMR2, fragile X mental retardation protein; FMR1, fragile X mental retardation 2; FXTAS, fragile X memor/ataxia syndrome; HD, Huntington disease; HDL2, Huntington disease-like 2; MJD, Machado-Joseph disease; PM, plasma membrane; PPP2R2B, protein phosphatase 2 (formerly 2A) regulatory subunit B; SBMA, spinal and bulbar muscular atrophy; SCA, spinocerebellar ataxia; TBP, TATA box binding protein; ZV/P9, zinc-finger protein 9.

Triplet repeat diseases

CAG repeat

Disease	Mutation/ repeat unit	Gene name (protein product)	Putative function	Normal repeat length	Pathogenic repeat length
Diseases	that are cause	d by loss of protein f	unction		
FRDA	(GAA) _n	FRDA (frataxin)	Mitochondrial iron metabolism	6–32	200–1,700
FRAXA	(CGG) _n	FMR1 (FMRP)	Translational regulation	6–60	>200 (full mutation)
FRAXE	(CCG)	FMR2 (FMR2)	Transcription?	4–39	200–900
Diseases	that are cause	d by altered protein i	function		
-			and the second second second second		

NPJ Parkinsons Dis. 2017 Sep 5;3:27. doi: 10.1038/s41531-017-0029-x. eCollection 2017.

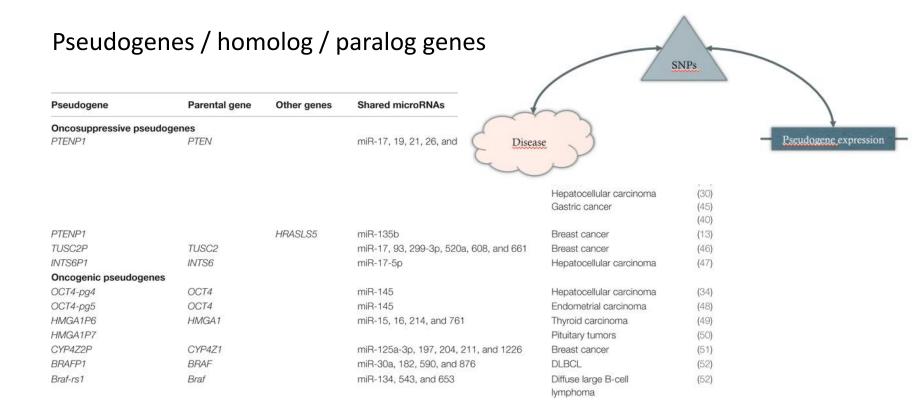
Parkinson's disease associated with pure ATXN10 repeat expansion.

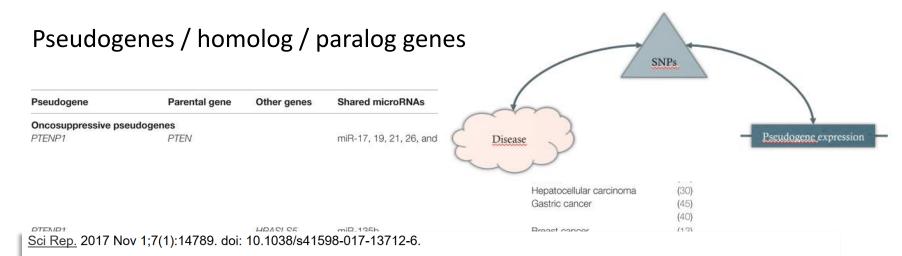
Schüle B^{#1}, McFarland KN^{#2}, Lee K¹, Tsai YC³, Nguyen KD⁴, Sun C⁴, Liu M⁴, Byrne C¹, Gopi R⁵, Huang N⁶, Langston JW¹, Clark T³, Gil FJJ⁷, Ashizawa T⁸.

	DRPLA	(CAG) _n	DRPLA (atrophin 1)	Transcription	7–34	49-88
	SDMV		AD (androgon	Storoid hormono	0.26	28 62
Ulum Const. 2017 Nov. 2:101/5):700 715 doi: 10.1016/j.siba.2017 (0 012					

<u>Am J Hum Genet.</u> 2017 Nov 2;101(5):700-715. doi: 10.1016/j.ajhg.2017.09.013.

Profiling of Short-Tandem-Repeat Disease Alleles in 12,632 Human Whole Genomes.


Tang H¹, Kirkness EF², Lippert C¹, Biggs WH², Fabani M², Guzman E², Ramakrishnan S¹, Lavrenko V¹, Kakaradov B², Hou C², Hicks B¹, Heckerman D¹, Och FJ¹, Caskey CT³, Venter JC⁴, Telenti A⁵.


Diseases of unknown pathogenic mechanism(s)

Hum Mutat. 2017 Mar;38(3):324-331. doi: 10.1002/humu.23150. Epub 2017 Jan 17.

Detecting AGG Interruptions in Male and Female FMR1 Premutation Carriers by Single-Molecule Sequencing.

<u>Ardui S¹, Race V¹, Zablotskaya A¹, Hestand MS¹, Van Esch H¹, Devriendt K¹, Matthijs G¹, Vermeesch JR¹.</u>

Nanopore-based single molecule sequencing of the D4Z4 array responsible for facioscapulohumeral muscular dystrophy.

<u>Mitsuhashi S^{1,2}, Nakagawa S^{3,4}, Takahashi Ueda M⁴, Imanishi T³, Frith MC^{5,6,7}, Mitsuhashi H⁸.</u>

BRAFP1	BRAF	miR-30a, 182, 590, and 876	DLBCL	(52)
Braf-rs1	Braf	miR-134, 543, and 653	Diffuse large B-cell	(52)
			lymphoma	

<u>Hum Mutat.</u> 2017 Jul;38(7):870-879. doi: 10.1002/humu.23223. Epub 2017 May 29.

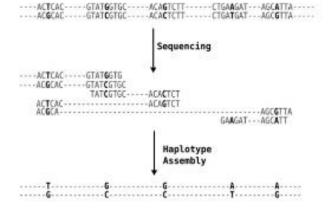
Detecting PKD1 variants in polycystic kidney disease patients by single-molecule long-read sequencing.

Borràs DM^{1,2,3}, Vossen RHAM⁴, Liem M⁴, Buermans HPJ⁴, Dauwerse H⁵, van Heusden D⁵, Gansevoort RT⁶, den Dunnen JT^{4,5,7}, Janssen B¹, Peters DJM⁵, Losekoot M⁷, Anvar SY^{4,5}.

Phased haplotypes

Maternal ATGCTACGATCGCTCG

Paternal ATGGTACGATCGATCG


Unphased ATG TACGATCS TCG

A few phasing possibilities

	ATGCTACGATCGCTCG
Paternal	ATGGTACGATCGATCG
	ATGCTACGATCGATCG
Paternal	ATGGTACGATCGCTCG

Maternal ATGGTACGATCGATCG Paternal ATGGTACGATCGCTCG

Maternal ATGGTACGATCGCTCG Paternal ATGCTACGATCGATCG

Phased haplotypes

Maternal	ATGCTACGATCGCTCG	ACTCACGTATGGTGCACAGTCTTCTGAAGATAGCATTA				
Paternal	ATGGTACGATCGATCG	Sequencing				

HLA. 2017 Aug;90(2):79-87. doi: 10.1111/tan.13057. Epub 2017 May 25.

Dual redundant sequencing strategy: Full-length gene characterisation of 1056 novel and confirmatory HLA alleles.

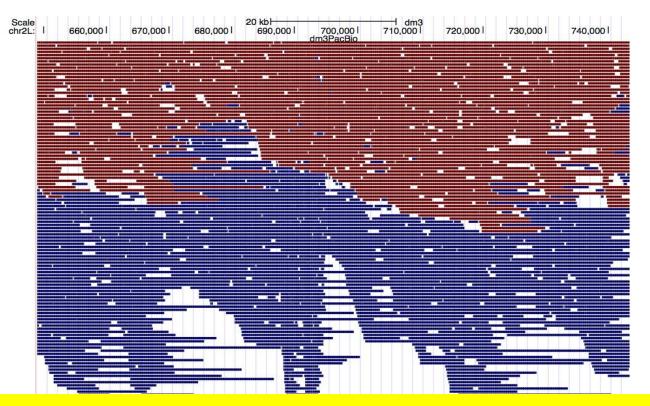
Albrecht V¹, Zweiniger C¹, Surendranath V¹, Lang K¹, Schöfl G¹, Dahl A², Winkler S³, Lange V¹, Böhme I¹, Schmidt AH^{1,4}.

Maternal ATGCTACGATCGATCG Revealing Complete Complex KIR Haplotypes Phased By Long-Read Sequencing Technology

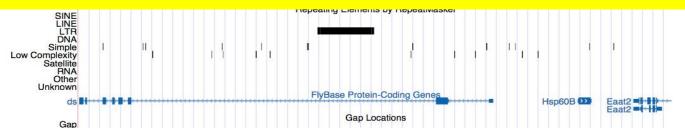
David Roe, Cynthia Vierra-Green, Chul-Woo Pyo, Kevin Eng, Richard Hall, Rui Kuang, Stephen Spellman, Swati Ranade, Daniel Geraghty, D Martin Maiers

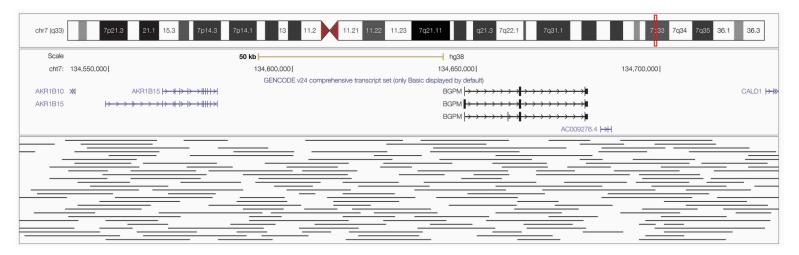
doi: https://doi.org/10.1101/135426

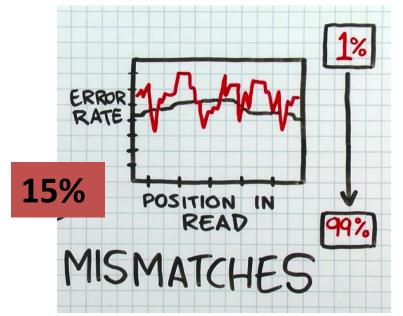
Oxoford nanopore even works in the jungle


PLoS One. 2017 Oct 4;12(10):e0184741. doi: 10.1371/journal.pone.0184741. eCollection 2017.

On site DNA barcoding by nanopore sequencing.


Menegon M¹, <u>Cantaloni C^{2,3}</u>, <u>Rodriguez-Prieto A¹</u>, <u>Centomo C³</u>, <u>Abdelfattah A²</u>, <u>Rossato M³</u>, <u>Bernardi M¹</u>, <u>Xumerle L^{2,3}</u>, <u>Loader S^{4,5}</u>, <u>Delledonne M^{2,3}</u>.


Sample species	Gene	Total Reads	2D Reads	2D Pass Reads	Similarity %			Reference (Accession number)
					Loman's	ONtoBAR	Sanger	
Amietophrynus brauni	16S	51,273	8,555	2,660	<i>99%</i>	100%	100%	Bufo brauni (AF220886)
Leptopelis vermiculatus	16S	109,047	57,110	42,102	92%	98%	98%	Leptopelis sp. (A168408)
Leptopelis vermiculatus	CO1	181,123	113,663	110,921	86%	83%	82%	S. araneus (JF499348)
Rieppeleon brachyurus	16S	97,080	16,760	8,026	92%	100%	100%	R. brachyurus (voucher AG19033)
Sorex alpinus	16S	84,913	24,807	7,706	98%	99%	99%	S. alpinus (DQ630322)
Rhynchocyon udzungwensis	CO1	167,466	104,419	97,725	88%	99%	97%	R. petersi (AG19033)
Arthroleptis xenodactyloides	16S	5,039	187	2	97%	100%	100%	A. xenodactyloides (A137057)



3rd generation technologies need 3rd generation bioinformatics

New bioinformatics tools for long reads

New bioinformatics tools for long reads

Bioinformatics. 2017 Aug 2. doi: 10.1093/bioinformatics/btx489. [Epub ahead of print]

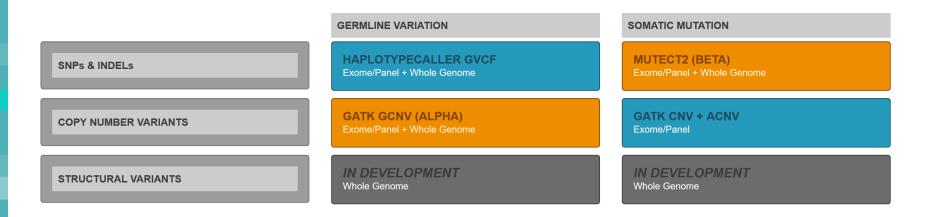
LRCstats, a tool for evaluating long reads correction methods.

La S¹, Haghshenas E², Chauve C¹.

ERROR

IEEE Trans Nanobioscience. 2017 Mar;16(2):108-115. doi: 10.1109/TNB.2017.2675981. Epub 2017 Mar 17.

Haplso: An Accurate Method for the Haplotype- Specific Isoforms Reconstruction From Long Single-Molecule Reads.


Mangul S, Yang TH, Hormozdiari F, Dainis AM, Tseng E, Ashley EA, Zelikovsky A, Eskin E.

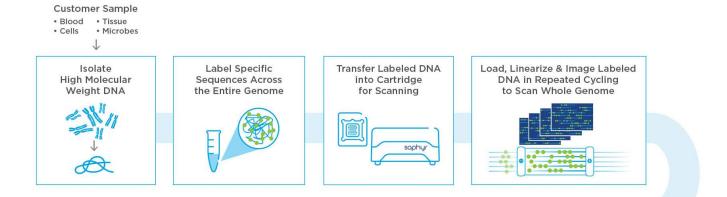
Worth to mention...

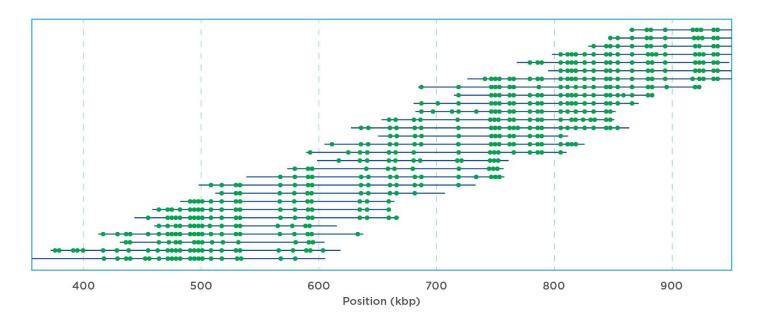
GATK Best Practices

Recommended workflows for variant discovery analysis with GATK

Nucleic Acids Res. 2017 Jun 2;45(10):e76. doi: 10.1093/nar/gkx024.

MosaicHunter: accurate detection of postzygotic single-nucleotide mosaicism through next-generation sequencing of unpaired, trio, and paired samples.

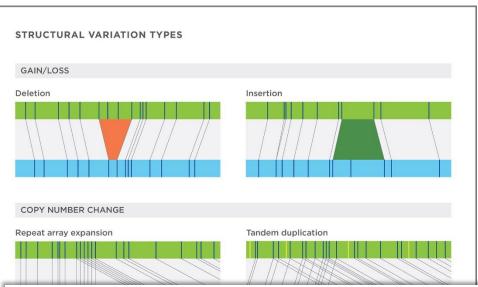

 $\underline{\text{Huang AY}}^{1,2}, \underline{\text{Zhang Z}}^{1,3}, \underline{\text{Ye AY}}^{1,4,5}, \underline{\text{Dou Y}}^{1,2}, \underline{\text{Yan L}}^{1}, \underline{\text{Yang X}}^{1}, \underline{\text{Zhang Y}}^{6}, \underline{\text{Wei L}}^{1}.$


SOPHIA COMMUNITY

3rd generation genome mapping

Bionano Genomics

DIGITAL REPRESENTATION OF LABELED LONG DNA

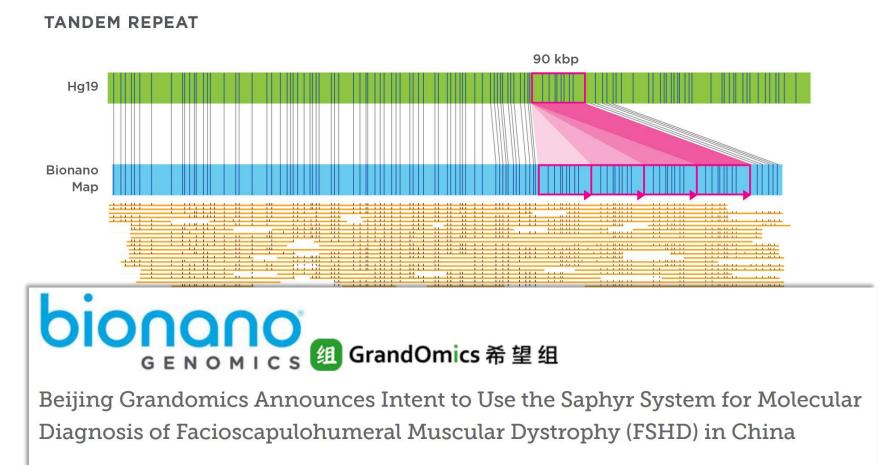


Bionano Genomics : structural variation

- 99% sensitivity for large homozygous insertions and deletions
- 87% sensitivity for large heterozygous insertions and deletions
- > 98% sensitivity for translocations
- > 98% sensitivity for inversions

Bionano Genomics : structural variation

- 99% sensitivity for large homozygous insertions and deletions
- 87% sensitivity for large heterozygous insertions and deletions
- > 98% sensitivity for translocations
- > 98% sensitivity for inversions


Genome Med. 2017 Oct 25;9(1):90. doi: 10.1186/s13073-017-0479-0.

Next-generation mapping: a novel approach for detection of pathogenic structural variants with a potential utility in clinical diagnosis.

<u>Barseghyan H</u>^{1,2}, <u>Tang W</u>¹, <u>Wang RT</u>¹, <u>Almalvez M</u>^{1,2}, <u>Segura E</u>¹, <u>Bramble MS</u>^{1,2}, <u>Lipson A</u>¹, <u>Douine ED</u>¹, <u>Lee H</u>³, <u>Délot EC</u>^{1,4,2}, <u>Nelson SF</u>^{1,3}, <u>Vilain E</u>^{5,6,7}.


Bionano Genomics : facioscapulohumeral muscular dystrophy

Beijing Grandomics using Bionano Saphyr to find Complex Genome Variants in Clincial Applications

Bionano Genomics : what else?

Targeted methylation analysis with no needs of bisulfite conversion

New Results

Reduced representation optical methylation mapping (R^2OM^2).

Assaf Grunwald, Hila Sharim, Tslil Gabrieli, Yael Michaeli, Dmitry Torchinsky, Matyas Juhasz, Kathryn R Wagner, Jonathan Pevsner, Jeff Reifenberger, Alex R Hastie, Han Cao, Elmar Weinhold, Yuval Ebenstein **doi:** https://doi.org/10.1101/113522

Liquid biopsy re-emerge old technolgies

Analysis of ctDNA in liquid biopsies requires a sensitivity down to 0.1 – 0.2%

French Firm Stilla Technologies Unveils Three-Color 'Crystal Digital' PCR Platform

Mar 16, 2016 | Madeleine Johnson

🖌 Premium

FORMULATRIX® Announces Unveiling of New High-throughput Digital PCR System

July 19, 2017 by Thomas Rawlins — Leave a Comment

BOSTON, MASSACHUSETTS—July 19, 2016— FORMULATRIX® announced today that the next generation CONSTELLATION® Digital PCR System will be revealed at the qPCR and Digital PCR Congress in Philadelphia on July 25th, 2017. "Based on customer feedback, we have built on our existing digital PCR platform by developing plates with up to 36,000 partitions per sample and by integrating partitioning, thermal cycling, and imaging into a single fully automated instrument that takes users from sample to answer in under one and a half hours," explained Jeremy Stevenson, Founder, and CEO of FORMULATRIX. "With up to five channel filters, the CONSTELLATION is the first ever digital PCR system to offer five color multiplexing making it a high-throughput platform capable of displacing qPCR as the method of choice for high-throughput quantification of nucleic acid targets."

Liquid biopsy and NIPT for monogenic disorders

Non invasive

Prenatal Test

Baylor Genetics launches PreSeek[™] - 1st non-invasive prenatal multi-gene sequencing screen

Baylor College of Medicine > Baylor College of Medicine News → Genetics → Baylor Genetics launches PreSeek[™] - 1st non-invasive prenatal multi-gene sequencing screen

PreSeek[™] screens for various clinically significant and life-altering genetic disorders that are not screened for with current NIPT technology. Disorders screened by this innovative test often occur in the absence of a family history of the condition. The screen, developed by the genomic experts at Baylor Genetics in conjunction with Baylor College of Medicine, assesses fetal DNA for pathogenic and likely pathogenic variants in 30 genes. PreSeek[™] is the next step in the evolution of screening for genetic disorders during pregnancy, providing information that can affect medical decisions, preparation, and peace of mind for families and physicians. Simply put, PreSeek[™] is the most comprehensive single gene cell-free fetal DNA screen available.

MOM

DAD

Thank's !