Variants prioritization: annotation and filtration steps

2nd Variant Effect Prediction Training Prague, Czech Republic, 2017 Prof. Christophe Béroud, Aix-Marseille University INSERM UMR_S910 Medical Genetics and Functional Genomics

Aix^{*}Marseille

GENETICS & BIOINFORMATICS TEAM

Inserm

Christophe Béroud– 2nd VEP Training 6th - 8th November 2017

WP1: Coordination

Hanns Lochmüller Newcastle and TREAT-NMD

WP2: Patient registries

Domenica Taruscio ISS and EPIRARE

WP3: Biobanks

Lucia Monaco Fondaz. Telethon & EuroBioBank

WP4: Bioinformatics

Christophe Béroud AMU & INSERM Marseille

WP5: Unified platform

Ivo Gut CNAG Barcelona

WP6 Ethical/legal/social

Mats Hansson Uppsala

WP7: Impact and innovation

Kate Bushby Newcastle and EUCERD/ EJARD

Aix Marseille

GENETICS & BIOINFORMATICS TEAM

The "genetics and bioinformatics" team

Marseille - France

Medical school of la Timone

Aix-Marseille Université and INSERM institute dedicated to Medical Genetics and functional Genomics *"Translational research in Rare Diseases"*

Aix⁺Marseille

GENETICS & BIOINFORMATICS TEAM

3

Our team

Genetics and Bioinformatics team – Multidisciplinary group

Bioinformatics

David Salgado *PhD*

Céline Guien Engineer

Jean-Pierre Desvignes *Engineer*

Marc Garibal *Engineer*

Coralie Grattepanche Master *Student*

Mélanie Corcuff Master Student

Genetics of Dystonia

Gwenaëlle Collod-Béroud Researcher

Arnaud Blanchard PhD

Kahina Medjber *PhD*

Aix Marseille

GENETICS & BIOINFORMATICS TEAM

Constance Renault Master Student

Our main projects

Locus Specific Mutation databases - UMD (Universal Mutation databases)

Gather >208,000 manually expert curated mutations in more than 60 databases:

- Genes involved in cancers (APC, BRCA1, BRCA2, TP53, RB1, MEN1, SUR1, VHL, WT1...)
- Genes involved in genetic disorders (FBN1, LDLR, DMD, VLCAD, MCAD, LMNA, EMD, FKRP, SGCG, SGCA, ATP7B, TREAT-NMD_DMD, TREAT-NMD_SMA...)

Aix Marseille

GENETICS & BIOINFORMATICS TEAM

Inserm

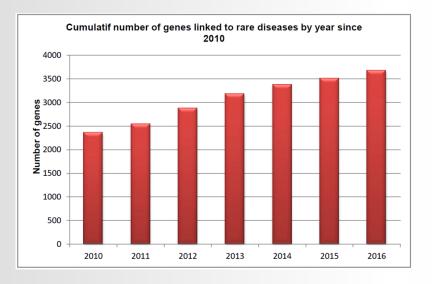
Patients registries – Population databases

Global TREAT-NMD DMD & SMA International Dysferlinopathy Registry French Database for Marfan and related Syndromes National databases CNVs (BANCCO) + SNVs (RDVD Rare disease variant database)

Pathogenicity prediction systems

UMD-Predictor (http://umd-predictor.eu) Human Splicing Finder (http://umd.be/HSF3/)

Next generation sequencing


NGS Data analysis Variant Annotation and Filtration tool (VarAFT)

Clinical tools

Skip-E for Antisense oligonucleotides to induce exon skipping NR-Analyzer for nonsense mutations eligible for non-sense read-through Crawfish for trans-splicing

Context

- Next generation Sequencing has facilitated the discovery of new genes and genetic variants in a multitude of human disorders
- 1st Whole-Exome Sequencing (WES) done by Ng et al 2009 in Miller Syndrome
- In 2013, >150 Mendelian disorders were studied by WES (Rabbani et al, J Hum Genet, 2014)
- IRDiRC and Orphanet -> 3,700 genes involved in RD, >1,300 identified between 2010 and 2016 (IRDiRC website)

Aix Marseille

GENETICS & BIOINFORMATICS TEAM

- Despite all these encouraging figures
 - Only 23-26% of WES are successful (higher rate if several individuals from the same family are sequenced 34-37% for a trio) [Farwell et al. 2015, Sawyer et al. 2016]
 - Technical factors (homopolymers, GC reach regions, poor quality at read ends ...)
 - Type of disease causing mutations (not captured, triplet repeat expansions, CNVs, pseudogenes ...)
 - Bioinformatics pipeline to generate VCF (same sequencing technology, not same VCF)

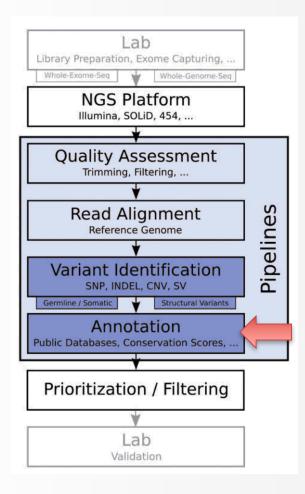
Aix+Marseille

GENETICS & BIOINFORMATICS TEAM

Inserm

Wrong annotations/filtrations

- Despite all these encouraging figures
 - Only 23-26% of WES are successful (higher rate if several individuals from the same family are sequenced 34-37% for a trio) [Farwell et al. 2015, Sawyer et al. 2016]
 - Technical factors (homopolymers, GC reach regions, poor quality at read ends ...)
 - Type of disease causing mutations (not captured, triplet repeat expansions, CNVs, pseudogenes ...)
 - Bioinformatics pipeline to generate VCF (same sequencing technology, not same VCF)


Aix+Marseille

GENETICS & BIOINFORMATICS TEAM

Inserm

Wrong annotations/filtrations

- Part of the data analysis process
 - Mandatory for prioritization and filtration of variants
- Two objectives
 - Help to refine our estimate of how likely a variant is to be true, genotype, quality ...
 - Provide functional annotations to determine the links between a genetic variation and a disease

Adapted from Pabinger et al. Briefings in Bioinformatics 2014

Aix^{*}Marseille

GENETICS & BIOINFORMATICS TEAM

Aix

🏰 Inserm

GENETICS & BIOINFORMATICS TEAM

Institut national de la santé et de la recherche médicale 10

It is performed at various levels

11

Institut national de la santé et de

GENETICS & BIOINFORMATICS TEAM

Christophe Béroud– 2nd VEP Training 6th - 8th November 2017

Christophe Béroud– 2nd VEP Training 6th - 8th November 2017

12

Institut national de la santé et de l

GENETICS & BIOINFORMATICS TEAM

Christophe Béroud– 2nd VEP Training 6th - 8th November 2017

13

Institut national de la santé et de

GENETICS & BIOINFORMATICS TEAM

Aix Marseille

23

🏰 Inserm

Institut national de la santé et de

GENETICS & BIOINFORMATICS TEAM

14

Christophe Béroud– 2nd VEP Training 6th - 8th November 2017

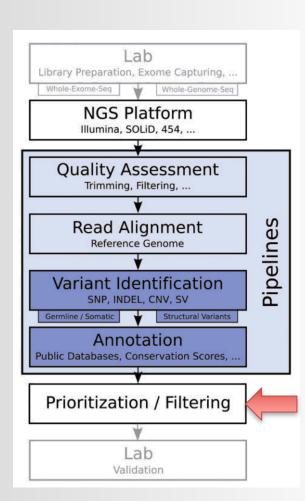
Variant annotation systems

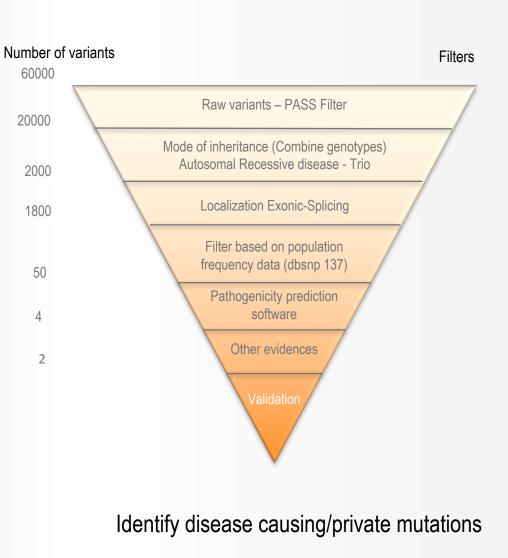
	Annovar	SNPeff	Ensembl VEP	SeattleSeq	AnnTools	Oncotator	Vanno	Variant Annotation Tools
Availability	Command line	Command line	Command line Webservices Web	web	command line	Command line Web	Web	Command line
Variant quality	Yes	Yes	Yes	-	Yes	-	Yes	Yes
Variant localization	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Gene/transcript annotation	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Genotype	Yes	Yes	Yes	Yes	Yes	-	Yes	Yes
Population frequency	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Impact at the RNA level	Yes	Yes	Yes	-	-	-	-	-
Impact at the protein level	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Conservation	Yes	Yes	Yes	Yes	-	Yes	Yes	Yes
Reported impact	-	-	Yes	Yes	-	Yes	Yes	Yes
Predicted pathogenicity	Yes	Yes	Yes	Yes	-	Yes	Yes	Yes
Gene ontology	Yes	-	-	-	-	Yes	Yes	-
Pathways	-	-	-	Yes	-	-	Yes	Yes
Tissue expression	-	-	-	-	-	-	-	-

Various types of annotation software are available (command line/web) No system is providing annotations at all levels → need to be combined

Aix

Marseille


GENETICS & BIOINFORMATICS TEAM


Inserm

15

Christophe Béroud- 2nd VEP Training 6th - 8th November 2017

Variant filtration

Aix

Marseille

🏰 Inserm

GENETICS & BIOINFORMATICS TEAM

16

Adapted from Pabinger et al. Briefings in Bioinformatics 2014

Filtration tools

- Automatic systems
 - Disease causing genes based on pedigree and phenotypic data

Software name	Availability	Mode of inheritance	Custom analysis	Mutation localization	Mutation type	Mutation frequency	Pathogenicity predictions	Functional evidences	Clinical report	Prioritization score
ExomeWalker	Web App	Yes	-	-	-	Yes	No but provided	No but provided	Yes	Yes
Exomiser	Command line	Yes	-	-	-	Yes	Yes	-	Yes	Yes
eXtasy	Command line Web App	-	-	-	-	-	No but provided	No but provided	-	Yes
MirTRIOS	Web App	Yes	-	Yes	Yes	Yes	Yes	-	No - But provided	Yes
OMIM Explorer	Web App	Yes*	-	-	-	-	-	-	Yes	Yes
OVA	Web App	Yes	-	Yes	Yes	Yes (2)	-	Yes	Yes	Yes
wKGGSeq	Web App	Yes	-	Yes	Yes	Yes	Yes	Yes	Yes	Yes

- Fast and accurate method for known genes/diseases
- Automatically gather additional information
- Work only with known genes/diseases with annotations
- Limited flexibility

* Does not combine multiple samples

GENETICS & BIOINFORMATICS TEAM

Inserm

17

Aix

Marseille

Filtration tools

- Semi automatic/manual systems
 - Users can select candidate mutations by applying various set of filters

Software name	Availability	Mode of inheritance	Custom analysis	Mutation localization	Mutation type	Mutation frequency	Pathogenicity predictions	Functional evidences	Clinical report
ANNOVAR	Command line	-	-	-	-	Yes	Yes	-	Yes
BIERapp	Web App	Yes	Yes	Yes	Yes	Yes	-	-	-
FILTUS	GUI	Yes	Yes	Yes - if provided	Yes - if provided	Yes - if provided	Yes - if provided	Yes - if provided	Yes - if provided
FMFilter	GUI	Yes	-	Yes - if provided	Yes - if provided	Yes - if provided	-	-	-
Gemini	Command line Web App	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Vanno	Web App	-	-	Yes	Yes	Yes	No but provided	Yes	Yes
VarAFT	GUI	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No - But provided
VarSifter	Command line Web App	Yes	Yes	Yes - if provided	Yes - if provided	Yes - if provided	Yes - if provided	Yes - if provided	Yes - if provided
VCF-MINER	Local Web App	Yes	Yes	Yes - if provided	Yes - if provided	Yes - if provided	Yes - if provided	Yes - if provided	Yes - if provided

Aix

Marseille

GENETICS & BIOINFORMATICS TEAM

Inserm

18

- Provide a good flexibility and traceability
- Can be tedious and difficult
- No filtration at all annotation levels

Challenges

Variant annotation and filtration are not a simple and solved problem

Variant Annotation

- Require the management of multiple and large data sources (local)
- Incorrect or incomplete annotations can cause researchers to overlook and dilute interesting variants in a pool of false positives
- From Davis McCarthy (Genome Medecine 2014)
 - Choice of transcript set and software can have a large effect on the variant annotation
 - Matching annotation for ANNOVAR on Ensembl or RefSeq genesets is only 83% for all exonic variants (lof, missenses, synonymous ...)
 - Comparison between ANNOVAR and VEP on Ensembl transcripts 87% of all exonic variants were in agreement

Aix Marseille

GENETICS & BIOINFORMATICS TEAM

- Even more discrepancies with splicing variants
- Where a specific tissue of interest is known, restrict annotation to transcripts known to be expressed in that tissue (GENCODE)

Challenges

Variant filtration/prioritization

- Good phenotypic description of patients
- Mode of inheritance should be known (identify the right model, hypothesis on the penetrance ...)
- No Gold standard but frequently used filters
 - Frequency in the population
 - Genotype
 - Mutation type / Pathogenicity
 - Need to be done interactively (add/remove filters)
- Discrepancies between pathogenicity predictors (may introduce false +/-)
- Population frequency (not all databases gather healthy individuals, ethnicity) e.g. presence in dbSNP does not mean "polymorphism"

Aix Marseille

GENETICS & BIOINFORMATICS TEAM

Inserm

20

Privacy issue may arise when using "online" system

Our systems

To improve and facilitate disease causing mutation identification

Control Control Control Control Control	Description With the completion of the Human Genome Project our vision of human genetic diseases has changed. Thousands of mutations are identified in diagnostic and research laboratories yearly. The knowledge of these mutations associated with chical and bubgged attaits is essential for chiname, geneticates are researchers.	Aix-Marselle Image: Insern Literation Genetics & BolivrointArics Team A Audications Our Offer Toos Control Us Get Started Start an Analysis With HSF 3.0		(All: Manselle) inserm Date: a build output: a first output:
<text><text><text><text><text><text><list-item><list-item><section-header><section-header><section-header><text></text></section-header></section-header></section-header></list-item></list-item></text></text></text></text></text></text>	In order to better understand intronic and exonic mutations leading to splicing defects, we decided to create the Huma Splicing Proter weeks. This tool is anime to help studying the pre-mRNA splicing Imore about splicing blackground). To calculate the consensus values of potential splice sites and search for branch opints, new algorithms were developed. Furthermore, we have integrated all available matrices to identify sconic and informit motifs, as well as new matrices to identify InRNA A1, Tra2-β and S68. We hope that this tool will be useful for your research. In order to improve it, please send us comments and new matrices to identify specific sequences involved in splicing. Other Splicing Tools • Matcritistican • RegRNA A Regulatory RNA Motifs and Elements Finder • El Splice Signal Anaysis • GeneSplicer • Splice Predictor (K); • Marc in predictor • ASPic	Fundings Image: Strategy of the strategy of t	<text><text><text><text><text><text><text></text></text></text></text></text></text></text>	Lancharges According to the second s
Refer to the office of the second of the office of the off	enicity prediction system variant annotation		Variant ann filtra	otation and

21

🏰 Inserm

Institut national de la santé et de

GENETICS & BIOINFORMATICS TEAM

Aix⁺Marseille

Reger

UMD-Predictor http://umd-predictor.eu

- Pathogenicity prediction system for any Human cDNA substitutions
 - Precomputed all possible substitutions for all nucleotides of any human transcripts (280,315,899 substitutions)
 - Combined multiple features in a unique score (0-100)
 - AA change substitution and biochemical matrices (BLOSUM/Yu)
 - Exonic splicing signal (HSF Acceptors and Donors splice sites)
 - Protein key residues (UNIPROT HCD)
 - Conserved and functional domains -100 species protein alignments (Phastcons) + Grantham
 - Allele frequency
- Available through a web application and webservices

INFORMATICS

Human Mutation

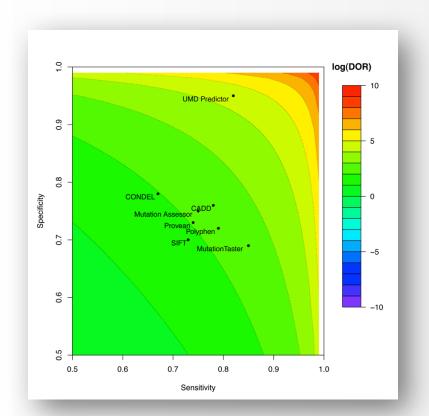
UMD-Predictor: A High-Throughput Sequencing Compliant System for Pathogenicity Prediction of any Human cDNA Substitution

Aix Marseille

GENETICS & BIOINFORMATICS TEAM

Inserm

22


David Salgado,^{1,2†} Jean-Pierre Desvignes,^{1,2†} Ghadi Rai,^{1,2} Arnaud Blanchard,^{1,2} Morgane Miltgen,^{1,2} Amélie Pinard,^{1,2} Nicolas Lévy,^{1,2,3} Gwenaëlle Collod-Béroud,^{1,2} and Christophe Béroud^{1,2,3*}

UMD-Predictor Evaluation

- 4 datasets (more than 140,000 mutations) Varibench + dbSNP, Uniprot, ClinVar and PredictSNP
- 7 references pathogenicity predictors

Varibench + dbSN	P = 17,329	variations
------------------	------------	------------

	SIFT	PPH2	Provean	Mutation Assessor	CONDEL	Mutation Taster	CADD	UMD- Predictor
ТР	9596	10290	9638	9775	8797	11174	10182	10727
TN	2805	3045	3088	3162	3287	2937	3214	4024
FP	1229	1189	1147	1073	948	1298	1021	211
FN	3498	2803	3456	3319	4297	1920	2912	2367
Sensitivity	0.73	0.79	0.74	0.75	0.67	0.85	0.78	0.82
Specificity	0.70	0.72	0.73	0.75	0.78	0.69	0.76	0.95
DOR	6.3	9.7	7.7	9.0	7.2	12.6	11.2	86.6
log(DOR)	1.84	2.27	2.04	2.20	1.97	2.53	2.42	4.46

DOR : Measure the effectiveness of a diagnostic test Trade-off between sensitivity and specificity

Aix⁺Marseille

GENETICS & BIOINFORMATICS TEAM

Similar results with other datasets (Cf. Salgado, Desvignes, et al. Human Mutation 2016)

Christophe Béroud- 2nd VEP Training 6th - 8th November 2017 23

UMD-Predictor Real data evaluation

Comparison using 3 WES performed in a clinical diagnostic context

	SIFT ^A	PPH2 ^A	Provean ^A	Mutation Assessor ^{A,D}	CONDEL ^{A,B}	Mutation Taster	CADDA	UMD- Predictor
NV1	1958	2881	1540	1339	1376	2677	3241	871
NV2	1341	2350	1332	1049	1111	2437	2555	540
NV3	1842	2781	1542	1350	1376	3401	3098	807

Shortest list of potential pathogenic mutations

Time required to process VCF files

	SIFT ^A	PPH2 ^A	Provean ^A	Mutation Assessor ^{A,D}	CONDEL ^{A,B}	Mutation Taster	CADD ^A	UMD- Predictor	Even faster b
PT1 (s)	1200	420	3240	540	3000	2100	8700	93	
PT2 (s)	240	420	8100	960	1500	2340	9360	206	webservices
PT3 (s)	540	420	4140	600	1500	2340	11160	240	

by

Fastest system to process variations from VCF files

Salgado D, et al. Human Mutation 2016

Aix

Marseille

GENETICS & BIOINFORMATICS TEAM

24

UMD-Predictor (http://umd-predictor.eu) Real data evaluation

Data from yesterday presentation: *BRCA1* c.5207T>C

ranscript position	Genomic position	Mutation (c.) T	Mutant (p.)	Pathogenicity	Conclusion
		5207			Select Filter
5207	41209139	c.5207T>A	p.Val1736Asp	100	Pathogenic
5207	41209139	c.5207T>C	p.Val1736Ala	84	Pathogenic
5207	41209139	c.5207T>G	p.Val1736Gly	99	Pathogenic
			G	io to page: 🚺 Show	w rows: 25 🔻 1–3 of 3 💽 🕨
port to XML Expo	ort to CSV Export to	TSV Export to JSON	1		

Salgado D, et al. Human Mutation 2016

Aix

Marseille

GENETICS & BIOINFORMATICS TEAM

25

- Pathogenicity prediction system for any mutations on splicing signals
- Reference system (828 citations, Web of Science; 1,125, Google Scholar)
- A "One stop-Shop" system
 - Splicing signals
 - Branch points
 - Auxiliary signals (ESE, ESS, ISE, ISS)
- Combine various predictive systems, matrices and specific algorithms
- Expert system for data interpretation (establishment of rules to provide a conclusion) e.g. MSH2 c.274_276del

 Interpreted Data 			
	levant results related to the mutation position and c he late exonic positions, the following table show re		ould be affected by the mutation
Predicted signal	Prediction algorithm	cDNA Position	Interpretation
	1 - ESE-Finder - SC35	A - T - C - T - T - C - T - T - C - T - G - G - T - T	
ESE Site Broken		2	Alteration of an exonic ESE site. Potential alteration of splicing.

Aix⁺Marseille

GENETICS & BIOINFORMATICS TEAM

26

Inserm

Compliant with NGS technologies: webservices (available in the HSF3-Pro version)

<u>ççcç</u>

₹Ā

.]₹

GENETICS & BIOINFORMATICS TEAM

Inserm

27

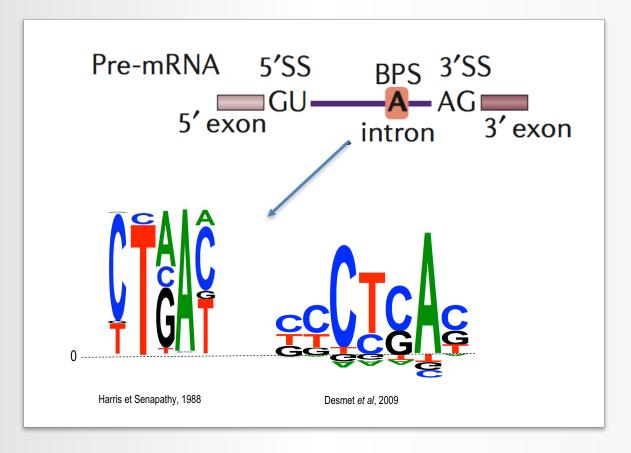
Aix⁺Marseille

- Use a BRCA1/2 mutations dataset from ClinVar
 - 5' ss (3 last exonic nt + 6 first intronic nt)
 - 3' ss (12 last intror
 - BRCA1
 - 135 pathogei
 - 16 non-pathc
 - BRCA2
 - 88 pathogenic mu
 - 15 non-pathogenic

BRCA1 & BRCA2 dataset	
True Positives	223
True Negatives	28
False Positives	3
False Negatives	0
Positive Predictive Value	0.986
Negative Predictive Value	1.000
Sensitivity	1.000
Specificity	0.903
Accuracy	0.988
Matthews Correlation Coefficient	0.944

Aix⁺Marseille

Université


GENETICS & BIOINFORMATICS TEAM

APAM

🏰 Inserm

Institut national de la santé et de la recherche médicale 28

Impact of mutations on branch points

Aix

Marseille

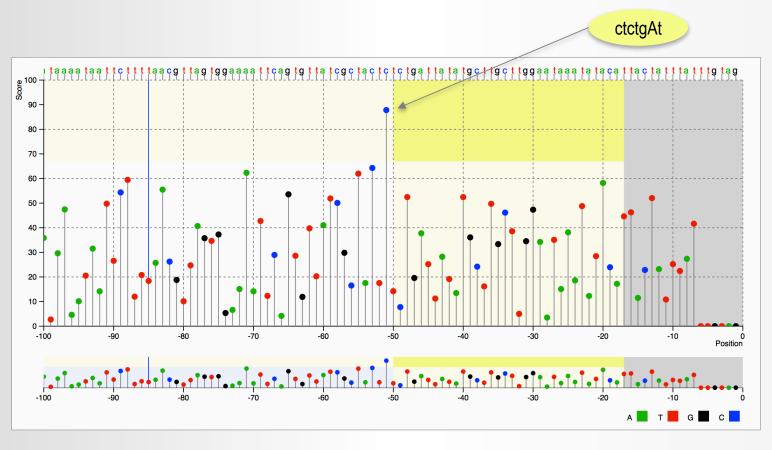
GENETICS & BIOINFORMATICS TEAM

Inserm

29

Christophe Béroud– 2nd VEP Training 6th - 8th November 2017

- Impact of mutations on branch points
- Few BPS are described in the literature
 - BRAF c.1141-51 C>G (Pupo et al. 2017), BPS identification
 - IKBKG/NEMO c.519-23A>T (Jorgensen et al. 2016), alteration of the BPS


Aix Marseille

GENETICS & BIOINFORMATICS TEAM

30

- C21orf2 c.643-23A>T (Wang et al. 2016), alteration of the BPS
- ITGB4 c.1762-25T>A (Masunaga et al. 2015), alteration of the BPS
- PC c.1369-29A>G (Ostergaardet al. 2012), alteration of the BPS
- KCNH2 c.IVS9-28A>G (Crotti et al. 2009), alteration of the BPS
- ...

- Few BPS are described in the literature
 - BRAF c.1141-51 C>G (Pupo et al. 2017), BPS identification

Aix⁺Marseille

GENETICS & BIOINFORMATICS TEAM

Inserm

31

Christophe Béroud– 2nd VEP Training 6th - 8th November 2017

- Few BPS are described in the literature
 - ITGB4 c.1762-25T>A (Masunaga et al. 2015), alteration of the BPS

 Sequences 			
Reference sequence			
ITGB4 Gene > ENST00000200181	Transcript > Exon number: 15 (99	9 bp) + 100 intronic nucleotides at exon ends	
		ggagagggag caggcaggga tggggcacag c	tggc t cact ggtgccccct cctaccccag
101 GGCATCTGTA ATGGACGTGG	CCACTGTGAG TGTGGCCGCT	GCCACTGCCA CCAGCAGTCG CTCTACACGG A	ACACCATCTG CGAGATCAAC TACTCGGCGg
201 tgaggctaag acctacgagg	tgtgggcgtg ggaacagggc	aggcacaggg cagtgtgggc aggaggggct a	aagcetgatg ceacaggage tggeeaagg
Total sequence length: 299	nucleotides		
Mutant sequence			
1 agcaccaccc accctctcca	gagagaaccc tatggagaga	ggagagggag caggcaggga tggggcacag c	tggc a cact ggtgccccct cctaccccag
101 GGCATCTGTA ATGGACGTGG	CCACTGTGAG TGTGGCCGCT	GCCACTGCCA CCAGCAGTCG CTCTACACGG P	ACACCATCTG CGAGATCAAC TACTCGGCGg
201 tgaggctaag acctacgagg	tgtgggcgtg ggaacagggc	aggcacaggg cagtgtgggc aggaggggct a	agcctgatg ccacaggagc tggccaagg
Total sequence length: 299	nucleotides		
- Interpreted Data			
This table shows only relevant result The mutation occurs in intronic regio The mutation occurs in the deep intr	n known to affect branching poir		ould be created by the mutation
Predicted signal	Prediction algorithm	cDNA Position	Interpretation
WT branch point broken	HSF matrices		Alteration of WT Branch Point.

Aix Marseille

GENETICS & BIOINFORMATICS TEAM

Inserm

32

Christophe Béroud- 2nd VEP Training 6th - 8th November 2017

Examples from Andreas Laner yesterday (impact on ESE/ESS)

GH1 c.176A>G								
* Sequences								
Reference sequ	ence							
	0323322 Transcript > Exon I							
							gtgggcggtc cttctcctag	
							TCCGACACCC TCCAACAGGG cagcacagcc aatgcccgtc	
301 cttcccctgc ag	Nonnnice gryagrygar	geettettet	cayycyyyya	cyyyyyayac	Clylayllay	ageceeeggg	caycacayot aatycooyto	
	e length: 312 nucleotides							
Mutant sequenc	e							
							gtgggcggtc cttctcctag TCCGACACCC TCCAACAGGG	
							cagcacagcc aatgcccgtc	
301 cttcccctgc ag								
Total sequence	e length: 312 nucleotides							
The underlined sequence	es are analyzed by HSF.							
- Interpreted Data								
	levant results related to the r he early exonic positions, the			acceptor splice	sites, ESE and	ESS that could I	be affected by the mutation	
Predicted signal	Prediction al	gorithm		cDNA Po	osition		Interpretation	
New ESS Site	1 - Sironi et al Motif 2		c	cctagGAAGGAGCCTATA			Creation of an exonic ESS site. Potential alteration of splicing.	
	2 - HSF Matrices - hnRNP A1							
	3 - Sironi et al.	- Motif 1	-	-4 -2 0 2 4 6 8 10 12				
	1 - RESCUE ESE	1 - RESCUE ESE Hexamers		c c t a g G A A G A A G C C T A T A T 2 3 4			Alteration of an exonic ESE site. Potential alteration of splicing.	
FOF Oits Prote	2 - ESR Sequences from Goren et al.					A		
ESE Site Broken	3 - EIEs from Zhang et al.					F		
	4 - HSF Matrice	s - Tra2-β		0 5 10 ·				

33

🏰 Inserm

GENETICS & BIOINFORMATICS TEAM

Aix

Marseille

Examples from Andreas Laner yesterday (impact on ESE/ESS)

equences			
nterpreted Data			
e mutation occurs in th	evant results related to the mutation position and cor e late exonic positions, the following table show resu		-
Predicted signal	Prediction algorithm	CDNA Position	Interpretation
New ESS Site	1 - PESS Octamers from Zhang & Chasin	T A G T G C A T A A A G A A G A A A	Creation of an exonic ESS site. Potential alteration of splicing.
	2 - HSF Matrices - hnRNP A1	194 196 198 200 202 204 206 208 21(
	1 - EIEs from Zhang et al.	T-A-G-T-G-C-A-G-A-A-G-A-A-G-A	
	2 - HSF Matrices - 9G8		Alteration of an exonic ESE site.
	3 - RESCUE ESE Hexamers	4	Potential alteration of splicing.
ESE Site Broken		194 196 198 200 202 204 206 208	

Aix⁺Marseille

E.

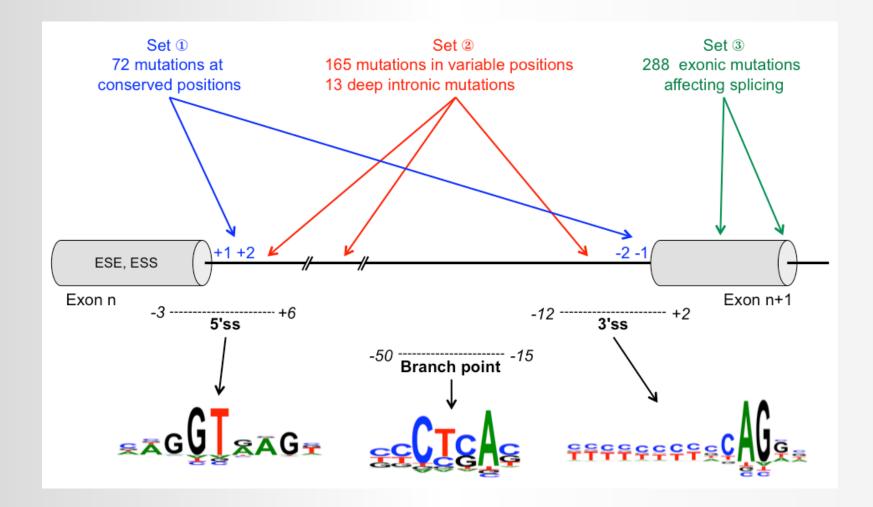
🏰 Inserm

GENETICS & BIOINFORMATICS TEAM

34

HSF system is highly accurate to predict the impact of mutations on 5' and 3' splice sites

Now contains specific matrices for non-canonical splice sites


HSF efficiently predicts the BPS and the impact of mutations on these sites

HSF predicts the impact of mutations on ESE/ESS

Aix Marseille

GENETICS & BIOINFORMATICS TEAN

Splicing predictors comparison

36

Aix

Marseille

dli.

GENETICS & BIOINFORMATICS TEAM

Software	Global	3'ss	5'ss	
GeneSplicer	63.89 %	82.61 %	55.1 %	
GenScan	45.83 %	82.61 %	30.61 %	
Human Splicing Finder	100% 100%		100%	
MaxEntScan	100%	100%	100%	
NNSplice	97.22 %	100%	95.92 %	
SplicePort	87.5 %	82.61 %	89.8 %	
SplicePredictor	87.5 %	95.65 %	83.67 %	
SpliceView	100%	100%	100%	
SROOGLE	100%	100%	100%	
Average	86.88 %	93.72 %	83.9 %	

R

Aix⁺Marseille

🏰 Inserm

GENETICS & BIOINFORMATICS TEAM

Institut national de la santé et de la recherche médicale

Software	Intronic (<100 bp)	Intronic (> 100 bp)				
GeneSplicer	41.18%	46.15%				
GenScan	11.76%	0.00%				
Human Splicing Finder	70.59%	92.31%				
MaxEntScan	23.53%	92.31%				
NNSplice	5.88%	69.23%				
SplicePort	35.29%	61.54%				
SplicePredictor	23.53%	69.23%				
SpliceView	17.65%	84.62%				
Sroogle	17.65%	30.77%				
Average	27.45%	60.68%				

Aix^{*}Marseille

Re

🏰 Inserm

GENETICS & BIOINFORMATICS TEAM

Institut rational de la santé et de la recherche médicale

Software	Polymorphisms			
GeneSplicer	50%			
GenScan	0%			
Human Splicing Finder	0%			
MaxEntScan	50%			
NNSplice	25%			
SplicePort	100%			
SplicePredictor	0%			
SpliceView	0%			
Sroogle	0%			
Average	10%			

39

🏰 Inserm

GENETICS & BIOINFORMATICS TEAM

Institut rational de la santé et de la recherche médicale

Aix^{*}Marseille

Region

Christophe Béroud– 2nd VEP Training 6th - 8th November 2017

40

Institut rutional de la santé et de la recherche médicale

GENETICS & BIOINFORMATICS TEAM

VARiant Annotation and Filtration Tool http://varaft.eu

- An user-friendly variant annotation and filtration tool
- Standalone multiplatform application
- Evaluation of the data coverage for WGS/WES/panel
- One click annotation (based on ANNOVAR) and other sources
- Provides UMD-Predictor and HSF annotations
- Interactive filtration at many levels
 - Combine multiple samples
 - Automatic selection of variants (mode of inheritance)
 - Genetic population studies
 - Cancers
- Standardize your variant analysis processes
 - save/reuse/share applied filters

Aix Marseille

GENETICS & BIOINFORMATICS TEAM

The identification of disease-causing mutations in human genetics remains challenging despite the NGS revolution as up to 70% of cases are still unsolved. To tackle this challenge, we developed the informatics or a powerful computer

VarAFT is a standalone and multiplatform (Windows, Mac, Unix) system which is easy to install and easy to use. It does not require skills in

41

Inserm

Variant Annotation and Filtration Tool

Auto	osomal	Recessive Disea	se Au	itosomal de n	ovo Dominant	Disease	Custo	om Analysis	=	•			Varf
D TRIC) : HOZ ×	ARD TRIO	HTZ Comp ×	ARD TRIO : HOZ with or	lly Father HTZ *	ARE	TRIO : with only Mo	other HTZ *	ARD TRIO HTZ with F		ARD TRIO : HTZ with Mother HTZ	z *	
<		Gene Based Ar	notation from Ref	Gene	2 2	<u>ନ</u> ୍ଦୁ	Conors	l Information					
Type Image: Splicing Image: Splicing Image: Splicing Image: Splicing Image: Splicing			 Synonymou NonSynony StopLoss StopGain Frameshift I Frameshift I 	nonymous pss ain shift Deletion shift Sub ameshift Del			Gene : KLHDC7A Genome Version : hg19 Chromosome : 1 Position : 18808526 Reference : A Observed Allele : C RefGene Function : exonic RefGene Exonic Function : nonsynonymous SNV						
 ✓ downstream ✓ UTR3 		Frameshift	Samples Informations										
1		/ UTR5 / intergenic / NA	 ✓ NonFrames ✓ NonFrames ✓ Unknown 		23		Samp 464 465 Mother Father	le	Genotype hom hom het uncertain-het	Depth 10 10 15 7	Frequency 1 1 0.73 0.29	-1 -1 -1 -1 -1 -1	ore
	Start	End Re	f Alt	Genotype	Depth F	requency	SNV Score	Func.refgene	Gene refgene	ExonicFunc.refae	ne AAChange.refgene	avsnp144	UMD Scor
	72 307 6		G	hom	83	1	1	exonic	TBC1D15	synonymous SNV	TBC1D15:NM_001146		5
	136 324 2		А	hom	25	1	-1	exonic	ADAMTS13	synonymous SNV	ADAMTS13:NM_1390	NA	5
	18 808 5		с	hom	10	1		exonic	KLHDC7A	nonsynonymous SNV	KLHDC7A:NM_15237	rs2992752	30
	10 647 7		А	hom	10	1		exonic	MR VI1	synonymous SNV	MRVI1:NM_00120688		5
	84 581 9		с	hom	101	1		exonic	ADAMTSL3	synonymous SNV	ADAMTSL3:NM_0013		5
	2 341 1 19 600 4		С	hom	41	1		exonic ncRNA_exonic	ZFYVE28 AKR7L	synonymous SNV NA	ZFYVE28:NM_001172 NA	rs2071680 rs149246656	5 NA
	630 9		G	hom	91	1		exonic	AKR /L PIGQ	NA synonymous SNV	NA PIGQ:NM_004204:exo		NA 27
	32 995 9		т	hom	48	1		exonic	CCR4	synonymous SNV	CCR4:NM_005508:exo		5
	54 775 5		т	hom	62	1		exonic	MRGPRX1	synonymous SNV	MRGPRX1:NM_14719		5
	18 955 8	61 18 955 861 C											

42

🏰 Inserm

Institut national de la santé et de

GENETICS & BIOINFORMATICS TEAM

Aix⁺Marseille

APAM

Conclusions

- No ideal annotation/filtration systems
 - Many of them are built to be used by bioinformaticians (command line systems)
- To maximize chances of identify causing mutations
 - be aware of challenges posed by each steps of the data analysis pipeline
 - use family members (when possible)
 - collect exact and complete phenotypic information
- Many challenges remain to be solved for both annotation and filtration systems benchmarking initiatives – CAGI challenges
- Most of the current available systems are created for WES and need to be adapted to WGS
- Many more issues arise with WGS
 - Annotation for non-coding regions but also for non-protein coding genes
 - Need to develop and improve pathogenicity prediction system for non-exonic mutations

Aix Marseille

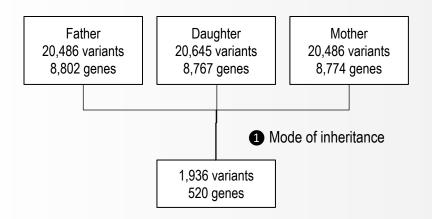
GENETICS & BIOINFORMATICS TEAM

43

Inserm

Facilitated with data-sharing initiatives (shared variants and conclusion)

- A trio with an affected daughter and two healthy parents
- Mabry syndrome: intellectual disability, distinctive facial features, hyperphosphatasia, and other signs and symptoms.


Father	Daughter	Mother
20,486 variants	20,645 variants	20,486 variants
8,802 genes	8,767 genes	8,774 genes

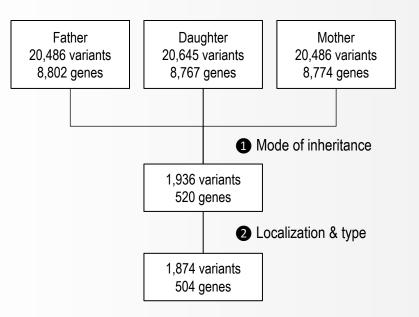
Aix

Marseille

🏰 Inserm

GENETICS & BIOINFORMATICS TEAM

- A trio with an affected daughter and two healthy parents
- Mabry syndrome: intellectual disability, distinctive facial features, hyperphosphatasia, and other signs and symptoms.
- 4 steps filtration workflow:
 - Mode of inheritance (Autosomal recessive)
 - Homozygous or compound heterozygous

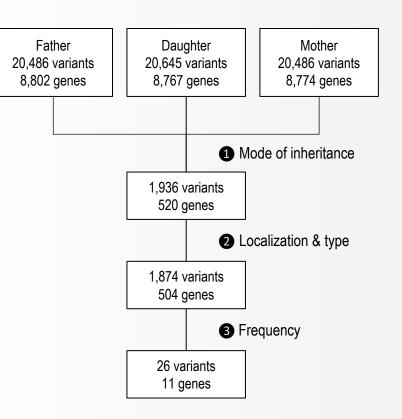


Aix^{*}Marseille

GENETICS & BIOINFORMATICS TEAM

Inserm

- A trio with an affected daughter and two healthy parents
- Mabry syndrome: intellectual disability, distinctive facial features, hyperphosphatasia, and other signs and symptoms.
- 4 steps filtration workflow:
 - Mode of inheritance (Autosomal recessive)
 - Homozygous or compound heterozygous
 - Mutation localization and type

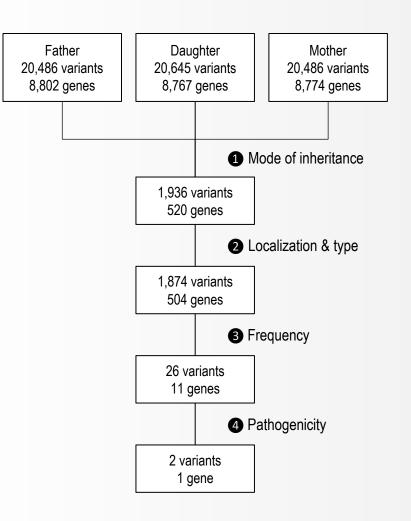


Aix^{*}Marseille

GENETICS & BIOINFORMATICS TEAM

Inserm

- A trio with an affected daughter and two healthy parents
- Mabry syndrome: intellectual disability, distinctive facial features, hyperphosphatasia, and other signs and symptoms.
- 4 steps filtration workflow:
 - Mode of inheritance (Autosomal recessive)
 - Homozygous or compound heterozygous
 - Mutation localization and type
 - Allele frequency



Aix^{*}Marseille

GENETICS & BIOINFORMATICS TEAM

Inserm

- A trio with an affected daughter and two healthy parents
- Mabry syndrome: intellectual disability, distinctive facial features, hyperphosphatasia, and other signs and symptoms.
- 4 steps filtration workflow:
 - Mode of inheritance (Autosomal recessive)
 - Homozygous or compound heterozygous
 - Mutation localization and type
 - Allele frequency
 - Pathogenicity predictions

Aix^{*}Marseille

GENETICS & BIOINFORMATICS TEAM

48

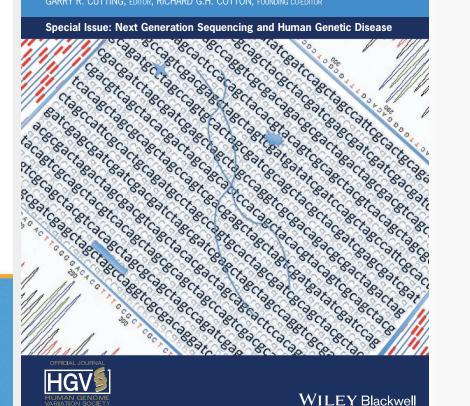
Inserm

More details

g Countries' Access ation for Life

ational peer-reviewed research is an essential ntists, researchers, policy-makers and medical ng countries to find local solutions to local health, conomic, and food issues.

journal is available free or at very low cost within a hundred of the world's poorest countries in Id Health Organization's HINARI initiative.


nation visit www.who.int/hinari

VOLUME 37 | ISSUE 12 | DECEMBER 2016

Human Mutation Variation, Informatics, and Disease

GARRY R. CUTTING, EDITOR, RICHARD G.H. COTTON, FOUNDING CO-EDITOR

Special Issue: Next Generation Sequencing and Human Genetic Disease

🏰 Inserm 49

Aix^{*}Marseille

GENETICS & BIOINFORMATICS TEAM

More details

Human Mutation

How to Identify Pathogenic Mutations among All Those Variations: Variant Annotation and Filtration in the Genome Sequencing Era

Aix Marseille

GENETICS & BIOINFORMATICS TEAM

Inserm

50

David Salgado,^{1*} Matthew I. Bellgard,^{2,3} Jean-Pierre Desvignes,¹ and Christophe Béroud^{1,4}

¹Aix Marseille University, INSERM, GMGF, Marseille, France; ²Centre for Comparative Genomics, Murdoch University, Perth, Western Australia, Australia; ³Western Australian Neuroscience Research Institute, Perth, Western Australia, Australia; ⁴APHM, Hôpital TIMONE Enfants, Laboratoire de Génétique Moléculaire, Marseille, France

For the Next Generation Sequencing special issue

Received 23 June 2016; revised 24 August 2016; accepted revised manuscript 31 August 2016. Published online 7 September 2016 in Wiley Online Library (www.wiley.com/humanmutation). DOI: 10.1002/humu.23110

Acknowledgements

David Salgado

Jean-Pierre Desvignes

<u>all members of the</u> <u>Genetics & Bioinformatics Team</u>

GenOmnis company (https://genomnis.com)

UMD-Predictor and HSF professional version for commercial users

Aix Marseille

GENETICS & BIOINFORMATICS TEAM

Inserm