

Variant Effect Prediction Training Course

6 - 8 November 2017

Prague, Czech Republic

Concurrent Practical Session ACMG Classification

Andreas Laner / Anna Benet-Pagès

Content

1. Background3
2. Aim of the Workshop3
3. Outline
Part A: Practical Variant Classification (75 min)4
Part B: Demonstration of inter-laboratory concordance in variant classification (15 min)4
4. Cases
Case 15
Notes:5
Case 2:
Notes:6
Case 3:7
Notes:7
Case 4:
Notes:8
Case 5:9
Notes:9
5. ACMG Tables10
Criteria for classifying pathogenic variants (ACMG Standards and Guidelines)10
Criteria for classifying benign variants (ACMG Standards and Guidelines)
Rules for combining criteria to classify sequence variants (ACMG Standards and Guidelines)12
6. Recommended Literature13
7. Databases

1. Background

The dramatic progress in sequence technology, lab automatization, and bio-IT data processing in the last decade have made high-throughput sequencing applications the standard method in molecular diagnostics. Especially since the development of benchtop NGS machines, almost every lab is able to create vast amounts of high-quality sequence data. However, there are still some important hurdles to overcome, especially the interpretation of sequence variants with a view to providing accurate clinical recommendations, a process that is considered a major bottleneck. Evaluating the pathogenicity of a variant is challenging given the plethora of types of genetic evidence that laboratories need to consider. Deciding how to weigh each type of evidence is difficult, and standards have been set. In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published guidelines for the assessment of variants in genes associated with Mendelian diseases ⁽¹⁾ (hereafter: ACMG-AMP guidelines). The goal of these guidelines is to establish standardized classification, annotation, interpretation, and reporting of sequence variants.

2. Aim of the Workshop

In this workshop, participants will be familiarized with the basic application of ACMG-AMP classification guidelines as well as with the limitations and pitfalls inherent in working with these guidelines on a daily basis. The following points will be addressed during the presentation:

- Familiarization with ACMG-AMP guidelines and their basic application
- Identification of classes of variants not covered by ACMG-AMP guidelines (e.g. somatic variants, pharmacogenomics, multigenic/complex disorders) or which must be considered cautiously (e.g. variants with low/moderate penetrance)
- Identification of top error-prone sources of information (e.g. ClinVar OMIM entries, old data sources, research submissions, disease areas, etc.) ⁽⁵⁾
- Awareness of various possible errors in variant interpretation
- Awareness of the fact that a considerable number of inter-laboratory discrepancies in variant classification are the result of a lack of published internal data, special biology, and old or invalid data sources.^(2, 3, 4, 5)

3. Outline

The workshop is divided in a practical part and in a short demonstration part.

Part A: Practical Variant Classification (75 min)

In the first part of the workshop, variants from real cases will be discussed collectively. The variants have been selected to represent ACMG-AMP categories that are known to be challenging in the classification process ^(2, 3, 4, 5). These variants were sent to workshop participants in advance of the VEPTC (see cases 1 to 5 on the following pages). In order to focus discussion at the variant level, only one or two variants per case will be considered for the classification process.

To facilitate classification an overview of the ACMG Criteria are provided in this document in table format (see Chaper 5). The tables describe the criteria to classify pathogenic, benign and unclassified variants. The first table lists the criteria for pathogenic variants and the second table lists criteria for benign variants. The third table describes the rules for the combination of the criteria to classify the variant.

To make the workshop more interactive, participants were asked to collect evidence for and against pathogenicity for each case and to prepare possible questions and remarks in advance. During this practical section, differences, difficulties, and discrepancies in variant classification will be discussed for all five cases.

Furthermore, we encourage participants to bring their own cases which can be discussed during or after the workshop, depending on the time.

Part B: Demonstration of inter-laboratory concordance in variant classification (15 min)

In the second part of the workshop recent publications reporting conflicting results regarding consistent variant classification using the ACMG-AMP guidelines will be discussed. Furthermore, the problem of discordant inter-laboratory variant classification will also be addressed.

4. Cases

Case 1

PATIENT: Male, 46 years of age.

PHENOTYPE: Mental retardation, hypophosphatemia and spinal deformity (osteopenia). Family history negative regarding mental retardation or skeletal abnormalities.

HPO-TERMS: Hypophosphatemia, Osteopenia

ANALYSED GENES: Clinical Exome-Kit (Illumina; 3.963 genes)

DETECTED VARIANT(S):

Gene (GRCh37/hg19)	Transcript	Variant (HGVS)	Zygosity	Ref	Alt	Chr. Position	dbSNP ID
SLC9A3 1	R NM_004252.4	c.328C>G (p.Leu110Val)	heterozygous	с	G	chr17:72745313	rs35910969

Case 2:

PATIENT: Female, 38 years of age.

PHENOTYPE: Breast-cancer, mother and maternal aunt also affected by breast-cancer at age 45 and 59, respectively. Clinical suspicion of hereditary breast-cancer. No family segregation analysis performed.

ANALYSED GENES: 12

ATM	BRCA1	BRCA2	CDH1	CHEK2	NBN	PALB2	PTEN	RAD51C
RAD510	STK	11 TP5	3					

DETECTED VARIANT(S):

Gene (GRCh37/hg19)	Transcript	Variant (HGVS)	Zygosity	Ref	Alt	Chr. Position	dbSNP ID
CHEK2	NM_007194.3	c.470T>C (p.lle157Thr)	heterozygous	A	G	chr22:29121087	rs17879961

Case 3:

PATIENT: Male, 2 years of age.

PHENOTYPE: Childhood cardiomyopathy, poor feeding, and muscle hypotonia.

ANALYSED GENES: 23

 AARS2
 ACAD9
 ACADM
 ACADS
 ACADVL
 AGK
 COX15
 CPT1A
 CPT2

 DSC2
 DSP
 GLA
 JUP
 LAMP2
 MT01
 RAF1
 SC02
 SDHA

 SLC22A5
 SLC25A20
 SLC25A3
 TAZ
 TMEM70
 CPT1A
 CPT2

DETECTED VARIANT(S):

Gene (GRCh37/hg19)	Transcript	Variant (HGVS)	Zygosity	Ref	Alt	Chr. Position	dbSNP ID
SLC22A5	NM_003060.3	c.1463G>A (p.Arg488His)	homozygous	G	A	chr5:131729380	rs28383481

Case 4:

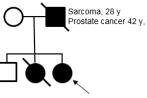
PATIENT: Male, 30 years of age

PHENOTYPE: Intracerebral hemorrhage at age 27. Positive family history of porencephaly, father deceased of haemorrhagic stroke.

ANALYSED GENES: 22

ABCC6	AMAC	R CAC	NA1C	CBS C	ECR1	COL	.3A1	COL4A1	COL4A2
CST3	FBN1	FLNA	GLA	HTRA1	NOT	H3	OTC	POLG	SLC2A10
TGFB2	TGFBR	1 TGF	BR2	TREX1	TTR				

DETECTED VARIANT(S):


Gene (GRCh37/hg19)	Transcript	Variant (HGVS)	Zygosity	Ref	Alt	Chr. Position	dbSNP ID
COL4A1	NM_001845.5	c.3067G>A (p.Gly1023Arg)	heterozygou s	С	т	chr13:110827696	-
COL4A1	NM_001845.5	c.3484G>A (p.Ala1162Thr)	heterozygou s	C	т	chr13:110826268	rs778978790

Case 5:

PATIENT: Female, 46 years of age.

PHENOTYPE: Astrocytoma at 10 years of age, breast cancer at 29 years of age, colorectal cancer at 39 years of age, kidney cancer at 45 years of age. Microsatellite stable with expression of all mismatch repair genes.

Brain tumor 11 y; Osteosarcoma 22 y 46 y; Astrocytoma 10 y., Breast Cancer 29 y., CRC 39 y. (microsatellite stable, expression of all MMR genes), Kidney Cancer 45 y,

ANALYSED GENES: 94

AIP A	LK APC	ATM	BAP1 BL	м вм	PR1A	BRCA1	BRCA2	BRIP1
BUB1B	CDC73	CDH1	CDK4 CDK		CDKN2A	CEBPA	CEP5	7
CHEK2	CYLD	DDB2	DICER1 DIS	3L2 E	GFR E	PCAM	ERCC2	ERCC3
ERCC4	ERCC5	EXT1 E	XT2 EZH2	FANG	A FAN	ICB FA		FANCD2
FANCE	FANCE	FANCG	FANCI FA	NCL	FANCM	FH F		ATA2
GPC3	HNF1A	HRAS K	IT MAX	MEN1	MET	MLH1	MSH2	MSH6
MUTYH	NBN	NF1 NF	2 NSD1	PALB2	PHOX2	B PMS	51 PM	52
PRF1	PRKAR1A	PTCH1	PTEN R/	AD51C	RAD51D	RB1	RECQL	4 RET
RHBDF2	RUNX1	SBDS	SDHAF2	SDHB	SDHC	SDHD	SLX4	SMAD4
SMARCB1	L STK11	SUFU	TMEM127	TP53	TSC1	TSC2	VHL	WRN
WT1	XPA XP	c						

DETECTED VARIANT(S):

Gee (GRCh3	ne 87/hg19)	Transcript	Variant (HGVS)	Zygosity	Ref	Alt	Chr. Position	dbSNP ID
TP	53	NM_000546.5	c.722C>T (p.Ser241Phe)	heterozygous	G	A	chr17:7577559	rs28934573
FH		NM_000143.3	c.1431_1433dup (p.Lys477dup)	heterozygous	-	ттт	chr1:241661227-241661228	rs367543046

5. ACMG Tables

Criteria for classifying pathogenic variants (ACMG Standards and Guidelines)

Eviden pathog y		Category
		Null variant (nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion) in a gene where LOF is a known mechanism of disease.
		Caveats:
Very	PVS1	• Beware of genes where LOF is not a known disease mechanism (e.g., GFAP, MYH7)
strong	FVJI	• Use caution interpreting LOF variants at the extreme 3' end of a gene
		 Use caution with splice variants that are predicted to lead to exon skipping but leave the remainder of the protein intact
		• Use caution in the presence of multiple transcripts

	PS1	 Same amino acid change as a previously established pathogenic variant regardless of nucleotide change Example: Val→Leu caused by either G>C or G>T in the same codon Caveat: Beware of changes that impact splicing rather than at the amino acid/protein level
	PS2	De novo (both maternity and paternity confirmed) in a patient with the disease and no family history Note: Confirmation of paternity only is insufficient. Egg donation, surrogate motherhood, errors in embryo transfer, and so on, can contribute to non maternity.
Strong	PS3	Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product Note: Functional studies that have been validated and shown to be reproducible and robust in a clinical diagnostic laboratory setting are considered the most well established.
	PS4	The prevalence of the variant in affected individuals is significantly increased compared with the prevalence in controls Note 1: Relative risk or OR, as obtained from case-control studies, is >5.0, and the confidence interval around the estimate of relative risk or OR does not include 1.0. See the article for detailed guidance. Note 2: In instances of very rare variants where case-control studies may not reach statistical significance, the prior observation of the variant in multiple unrelated patients with the same phenotype, and its absence in controls, may be used as moderate level of evidence.

PM1	Located in a mutational hot spot and/or critical and well-established functional domain (e.g., active site of an enzyme) without benign variation.
PM2	Absent from controls (or at extremely low frequency if recessive) (Table 6) in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium
F //\Z	 Caveat: Population data for insertions/deletions may be poorly called by next- generation sequencing.

	PM3	For recessive disorders, detected in trans with a pathogenic variant
Moder		Note: This requires testing of parents (or offspring) to determine phase.
ate	PM4	Protein length changes as a result of in-frame deletions/insertions in a nonrepeat region or stop-loss variants
		Novel missense change at an amino acid residue where a different missense change determined to be pathogenic has been seen before
	PM5	• Example: Arg156His is pathogenic; now you observe Arg156Cys
		 Caveat: Beware of changes that impact splicing rather than at the amino acid/protein level.
	PM6	Assumed de novo, but without confirmation of paternity and maternity

	PP1	Co segregation with disease in multiple affected family members in a gene definitively known to cause the disease Note: May be used as stronger evidence with increasing segregation data
	PP2	Missense variant in a gene that has a low rate of benign missense variation and in which missense variants are a common mechanism of disease
Suppo rting	PP3	 Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.) Caveat: Because many in-silico algorithms use the same or very similar input for their predictions, each algorithm should not be counted as an independent criterion. PP3 can be used only once in any evaluation of a variant.
	PP4	Patient's phenotype or family history is highly specific for a disease with a single genetic etiology
	PP5	Reputable source recently reports variant as pathogenic, but the evidence is not available to the laboratory to perform an independent evaluation

Criteria for classifying benign variants (ACMG Standards and Guidelines)

Evidence of benign impact		Category
Stand alone	BA1	Allele frequency is >5% in Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium

		BS1 Allele frequency is greater than expected for disorder (see Table 6)	
		BS2	Observed in a healthy adult individual for a recessive (homozygous), dominant (heterozygous), or X-linked (hemizygous) disorder, with full penetrance expected at an early age
s	Strong	BS3	Well-established in vitro or in vivo functional studies show no damaging effect on protein function or splicing
			Lack of segregation in affected members of a family

	BS4	• Caveat: The presence of phenocopies for common phenotypes (i.e., cancer, epilepsy) can mimic lack of segregation among affected individuals. Also, families may have more than one pathogenic variant contributing to an autosomal dominant disorder, further confounding an apparent lack of segregation.
--	-----	--

	BP1	Missense variant in a gene for which primarily truncating variants are known to cause disease
	BP2	Observed in trans with a pathogenic variant for a fully penetrant dominant gene/disorder or observed in cis with a pathogenic variant in any inheritance pattern
	BP3	In-frame deletions/insertions in a repetitive region without a known function
Suppo rting	BP4	 Multiple lines of computational evidence suggest no impact on gene or gene product (conservation, evolutionary, splicing impact, etc.) Caveat: Because many in silico algorithms use the same or very similar input for their predictions, each algorithm cannot be counted as an independent criterion. BP4 can be used only once in any evaluation of a variant.
	BP5	Variant found in a case with an alternate molecular basis for disease
	BP6	Reputable source recently reports variant as benign, but the evidence is not available to the laboratory to perform an independent evaluation
	BP7	A synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence nor the creation of a new splice site AND the nucleotide is not highly conserved

Rules for combining criteria to classify sequence variants (ACMG Standards and Guidelines)

	(i) 1 Very strong (PVS1) AND
	a) ≥ 1 Strong (PS1-PS4) OR
	b) ≥2 Moderate (PM1-PM6) OR
	c) 1 Moderate (PM1-PM6) and 1 supporting (PP1-PP5) OR
	d) ≥2 Supporting (PP1-PP5)
Pathogenic	(ii) ≥2 Strong (PS1-PS4) OR
	(iii) 1 Strong (PS1-PS4) AND
	a) ≥3 Moderate (PM1-PM6) OR
	b) 2 Moderate (PM1-PM6) AND \geq 2 Supporting (PP1-PP5) OR
	c) 1 Moderate (PM1-PM6) AND \geq 4 supporting (PP1-PP5)
	(i) 1 Very strong (PVS1) AND 1 moderate (PM1-PM6) OR

(ii) 1 Strong	(PS1-PS4) AND	1-2 moderate	(PM1-PM6) OR
---------------	---------------	--------------	--------------

(iii) 1 Strong (PS1-PS4) AND ≥2 supporting (PP1-PP5) OR

pathogenic	(iv) ≥3 Moderate (PM1-PM6) OR	
	(v) 2 Moderate (PM1-PM6) AND ≥2 supporting (PP1-PP5) OR	
	(vi) 1 Moderate (PM1-PM6) AND ≥4 supporting (PP1-PP5)	

Benign	(i) 1 Stand-alone (BA1) OR
	(ii) ≥2 Strong (BS1-BS4)

	(i) 1 Strong (BS1-BS4) and 1 supporting (BP1-BP7) OR
Likely benig	n (ii) ≥2 Supporting (BP1-BP7)

Uncertain	(i) Other criteria shown above are not met OR
significance	(ii) the criteria for benign and pathogenic are contradictory

6. Recommended Literature

- (1) Richards et al.; Genet. Med. 17, 405-424, 2015
- (2) Amendola et al.; Am J Hum Genet 98, 1067-1076, June 2, 2016
- (3) Harrison et al.; Genet. Med. Mar 16 (PMID: 28301460)
- (4) Pepin et al.; Genet Med. Jan; 18(1) 20-4 (PMID: 25834947)
- (5) Yang et al.; Genet. Med. Jun 1 2017 (PMID: 28569743)

7. Databases

Population databases	Exome Aggregation Consortium http://exac.broadinstitute.org/
	Exome Variant Server http://evs.gs.washington.edu/EVS
	1000 Genomes Project http://browser.1000genomes.org
	dbSNP http://www.ncbi.nlm.nih.gov/snp

	dbVar https://www.ncbi.nlm.nih.gov/dbvar
	GnomAD http://gnomad.broadinstitute.org/
Disease databases	ClinVar http://www.ncbi.nlm.nih.gov/clinvar
	OMIM http://www.omim.org
	Human Gene Mutation Database http://www.hgmd.cf.ac.uk/ac/index.php
	Human Genome Variation Society http://www.hgvs.org/
	Leiden Open Variation Database http://www.lovd.nl
	DECIPHER http://decipher.sanger.ac.uk
Sequence databases	NCBI Genome http://www.ncbi.nlm.nih.gov/genome
	RefSeqGene http://www.ncbi.nlm.nih.gov/refseq/rsg
	Locus Reference Genomic (LRG) http://www.lrg-sequence.org
	MitoMap <u>http://www.mitomap.org/MITOMAP/</u> HumanMitoSeq