# Future developments

### & meeting evaluation

# VEPTC 27 - 30 Aug. 2018 VUMed, Johor, Malaysi



tinyurl.com/ VEPTC-23







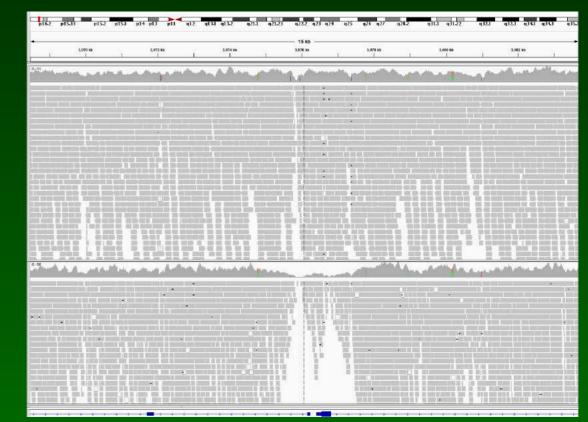
Human and Clinical Genetics

### Johan den Dunnen



# My genome

### sequenced it twice


| 4 bp | 3,076,480 bp | 3,076,380 kp<br> | 3,876,608 hp | 3,076,790 bp | 3,476,808 bp. | 3,676,986 Hp<br> | 5,077,080 bp<br> | 3,877,100 bp<br>I I | <u></u> |
|------|--------------|------------------|--------------|--------------|---------------|------------------|------------------|---------------------|---------|
|      |              |                  |              |              |               |                  |                  |                     |         |
|      |              | t.               |              |              |               |                  |                  |                     |         |

top: no PCR (2013) bottom: few cycles (2017)



## *(best way to determine quality)*

#### HTT gene



#### GC-bias (WGS)







who sequenced their genome ? who had a DNA test ?

who has the DRD4 7R gene ?





### 1 in 4 has the DRD4 7R gene



VEHICLES V APPROVED PRE-OWNED FLEET & BUSINESS

FLEET & BUSINESS OWNERSHIP EXPERIENCES

P EXPERIENCES ABOVE AND BEYOND

#### THE ADVENTURE GENE

Are you hard-wired to go Above and Beyond?

WATCH THE FILM

NEW DISCOVERY SPORT

EXPLORE THE VEHICLE

# Commercial DNA test



OUR TESTS ABOUT US BLOG CONT



Whole Genome Sequencing (WGS) - Full DNA Analysis

£399

### Analyze 100% of Your DNA

For Your Health, Longevity and More

SHOP NOW



Whole Exome Sequencing (WES) -Sequence all Your Genes

© JT den Dunnen

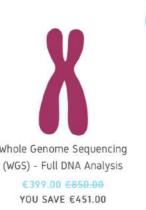




# Special offer



### HALLOWEEN SPECIAL: €399 WHOLE GENOME SEQUENCING


FOR OCTOBER 30 AND 31 ONLY

Special offer ightarrow

maybe offer on Halloween because it is a scary thing to do ?

Halloween Special

2017







Human and Clinical Genetics

## ...future !?

### ...your (grand) grand children will not believe you dared to live without knowing your genome,

### ...nor your partner's genome





#### Eerst een DNA-test, dan pas bevruchten

#### Geneeskunde

Een baby zonder ernstige erfelijke ziekte. Stellen die dat willen, kunnen hun DNA op tientallen ziekten laten testen. Nog vóór ze het kind maken.

🖋 Wim Köhler 💿 23 september 2016







## ...future !?

nowadays nobody would start surgery without an X-ray,

why do we start treatment without knowing the genome ?

Olaf Rieß





# ... for the hospital

...a patient will not be treated when the basics, the DNA, is not known

...why risk undesired effects from treatment, when these can be determined beforehand ?

...why risk treating a problem for which the origin lies elsewhere (has a genetic component) ?





### more sequence longer reads faster cheaper

ACAAGTTACCCTAGGG&TAACAGCGCAATCCTATTCTAGAGTCCATATCAACAATAGGGTTTAI TCTATCTACNTTCAAAATTCCTCCCTGTACGAAAGGACAAGAGAAATAAGGGCCTACTTCACAAA GTCAGAGGTTCAATTCCTCTTCTTAACAACATACCCATGGCCAACCTCCTACTCCTCATTGTA TGACGCCATAAAACTCTTCACCAAAGAGCCCCCTAAAAACCCGCCACATCTACCATCACCCTCTA GCCTAGCCGTTTACTCAATCCTCTGATCAGGGTGAGCATCAAACTCAAACTACGCCCTGATCG ATTACTCCTGCCATCATGACCCTTGGCCATAATAT STARC ATACA CACTC OCTTO TATTAT AACTOA TOCACCOTOCCTACACCTAACCATCTTCTCCTTACACCTACCACCTCT **TOTATOTTAGG** GRARARRAGARCCRTTTGGATACATAGGTATGGTCTGRGCTATGRTATC/ AAAGTATTTAGUTGAUTUGCUACACTCUACGGAAGUAATATGAAATGATUTGUTGUTGUGGUGU GAGCTGTATTTGCCATCATAGGAGGCTTCATTCACTGATTTCCC GACTACCCCGATGCATACACCACATGAAACATCCTATCATCTGTAGGCTC TRCCACACATTCGAAGAACCCGTANACATAAAATCTAGACAGAAAAGGA

...single molecule ...label-free

# Single molecule sequencing



© JT den Dunnel

Human and Clinical Genetics

# Future technology







# Future technology



### twoporeguys

#### Meet the Guys...



The Universal Biosensor People Animals Agriculture Environment





## .and then





### SmidgION

sequence @home





# ...everything possible

...all these possibilities, too many to test

### ...anything that theoretically can go wrong, in practice will go wrong once

...incl. bioinformatically





## Rare cases ?

• maybe, ...but we go for the simple & obvious many options not even considered many not detected using exome sequencing rare cases difficult to proof may require additional experiments and functional proof

 recent publications intellectual disability, >2100 WES trios used statistics to find proof of causality several new genes/variants implicated





## Rare cases ?

### many mono-genic diseases solved

#### where are the di-genic diseases ?? I would expect many more

NATURE GENETICS VOLUME 44 | NUMBER 12 | DECEMBER 2012

Digenic inheritance of an *SMCHD1* mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2

Richard J L F Lemmers<sup>1,13</sup>, Rabi Tawil<sup>2,13</sup>, Lisa M Petek<sup>3</sup>, Judit Balog<sup>1</sup>, Gregory J Block<sup>3</sup>, Gijs W E Santen<sup>4</sup>, Amanda M Amell<sup>3</sup>, Patrick J van der Vliet<sup>1</sup>, Rowida Almomani<sup>4</sup>, Kirsten R Straasheijm<sup>1</sup>, Yvonne D Krom<sup>1</sup>, Rinse Klooster<sup>1</sup>, Yu Sun<sup>1</sup>, Johan T den Dunnen<sup>1,4</sup>, Quinta Helmer<sup>5</sup>, Colleen M Donlin-Smith<sup>2</sup>, George W Padberg<sup>6</sup>, Baziel G M van Engelen<sup>6</sup>, Jessica C de Greef<sup>1,12</sup>, Annemieke M Aartsma-Rus<sup>1</sup>, Rune R Frants<sup>1</sup>, Marianne de Visser<sup>7</sup>, Claude Desnuelle<sup>8,9</sup>, Sabrina Sacconi<sup>8,9</sup>, Galina N Filippova<sup>10</sup>, Bert Bakker<sup>4</sup>, Michael J Bamshad<sup>3,11</sup>, Stephen J Tapscott<sup>10</sup>, Daniel G Miller<sup>3,11</sup> & Silvère M van der Maarel<sup>1</sup> clear phenotype unsolved FSHD cases

WES analysis several families shared SMCHD1 variants







### • 20,000 protein coding 60,000 total

- which gene should be in a specific panel
- which transcript to use preferred reference transcript



New rare disease gene tool launched PanelApp

standards for analysis, agreement on what to analyse

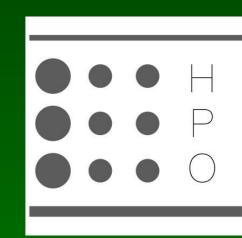






VEPTC 27 - 30 Aug. 2018 NUMed, Johor, Malaysia

Variant Effect Prediction Training Course


# Standards

• annoying, ...but we need them ..and use without errors

• variants HGVS nomenclature



 phenotypes Human Phenotype Ontology (HPO)









## Databases

### ...all these databases

DNA diagnostics is based on: SHARING what we know between variants in genes without sharing, no DNA diagnostics

|            | Search            |                           |
|------------|-------------------|---------------------------|
| search     | for "c.1105G>A" c | or "brc                   |
| 20644 vari | ants              | ? legend                  |
| Gene       | HGVS Nucleotide   |                           |
| BRCA1      | c.4358-2692G>A    |                           |
| BRCA2      | c.775delA         |                           |
| BRCA1      | c.117T>A          |                           |
| BRCA2      | c.7341T>C         |                           |
| BRCA1      | c.134+1508G>A     |                           |
| BRCA2      | c.7544C>T         |                           |
| BRCA1      | c.825_828delCAC.  | - • []                    |
| BRCA2      | c.9118-1G>A       | $(\overline{\mathbf{T}})$ |
| BRCA1      | c.5333-18T>G      |                           |

Search

...now you can give me your data for free

*in due time it will become mandatory, and you have to pay me* 





| Web Images Video Maps News Shopping Gmail n                                                                                                                           | nore 🔻                                                                                                                                                         |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Google <sup>®</sup> c.62G>A lovd                                                                                                                                      | Search Advanced Search<br>Preferences                                                                                                                          |  |  |  |  |
| Web Show options                                                                                                                                                      | Essayez avec cette orthographe : c.62G>A love                                                                                                                  |  |  |  |  |
| Did you mean: <u>c.62G&gt;A <b>loved</b></u>                                                                                                                          |                                                                                                                                                                |  |  |  |  |
| Search unique variants - LOVD - Leiden Open Va<br>02, c.62G>A, -, r.(?) p.(Arg21GIn ), ARG1_00001, -, -, Mite<br>by LOVD v.2.0 Build 18. Enabled modules: showmaxdbic |                                                                                                                                                                |  |  |  |  |
| chromium.liacs.nl/ <b>LOVD</b> 2/variants.php?select_db=ARG1<br>unique&search_pathogenic_= 28k - <u>Cached</u> - <u>Similar p</u>                                     | Google                                                                                                                                                         |  |  |  |  |
| <u>View unique variants - LOVD - Leiden Op</u><br>01, 1- <b>62G</b> >A (Reported 10 times), -, -, GCK_0003<br>Leu20Pro, GCK_00063, 02, 106C>T (Reported 2             | c.1A>G LOVD                                                                                                                                                    |  |  |  |  |
| chromium.liacs.nl/ <b>LOVD</b> 2/variants.php?action=vie<br><u>Cached</u> - <u>Similar pages</u><br><u>More results from chromium.liacs.nl »</u>                      | ALL IMAGES VIDEOS SHOPPING NEWS MAPS BOOKS                                                                                                                     |  |  |  |  |
| Variants - NGRL, Manchester LOVD - Leiden C<br>NGRL, Manchester LOVD. ubiquitin protein ligase E3A (                                                                  | Did you mean: c.1A>G <i>LOVE</i>                                                                                                                               |  |  |  |  |
| RNA change. Protein, p.Cys21Tyr (predicted)<br>ngrl.man.ac.uk/ <b>lovd</b> 2/variants.php?select_db=UBE3A&a<br>0000082%2C0000082%2C21 - <u>Similar pages</u>          | HBB:c.1A>G - bx.psu.edu).<br>https://lovd.bx.psu.edu > variants > DNA                                                                                          |  |  |  |  |
|                                                                                                                                                                       | HBB homepage View unique variants Public list of submitters Submit new data View unique variants $\cdot$ Search unique LOVD - Variant listings for HBB. Unhide |  |  |  |  |
|                                                                                                                                                                       | All transcript variants in gene FANCA - Global Variome shared LOVD<br>https://databases.lovd.nl - shared - FANCA                                               |  |  |  |  |





## Share



### back at the office

submit ALL variants (immediately)





or send us your file for batch submission

for the patients and their families





## Share !!

#### DMD gene

AGATCCAGCTCAGCAAGCGCTGGCGGGAAAT<u>1</u> **I** Q L S K R W R E I

### c.5859C>T r.(?) p(Ser1953=)

### found in diagnosis

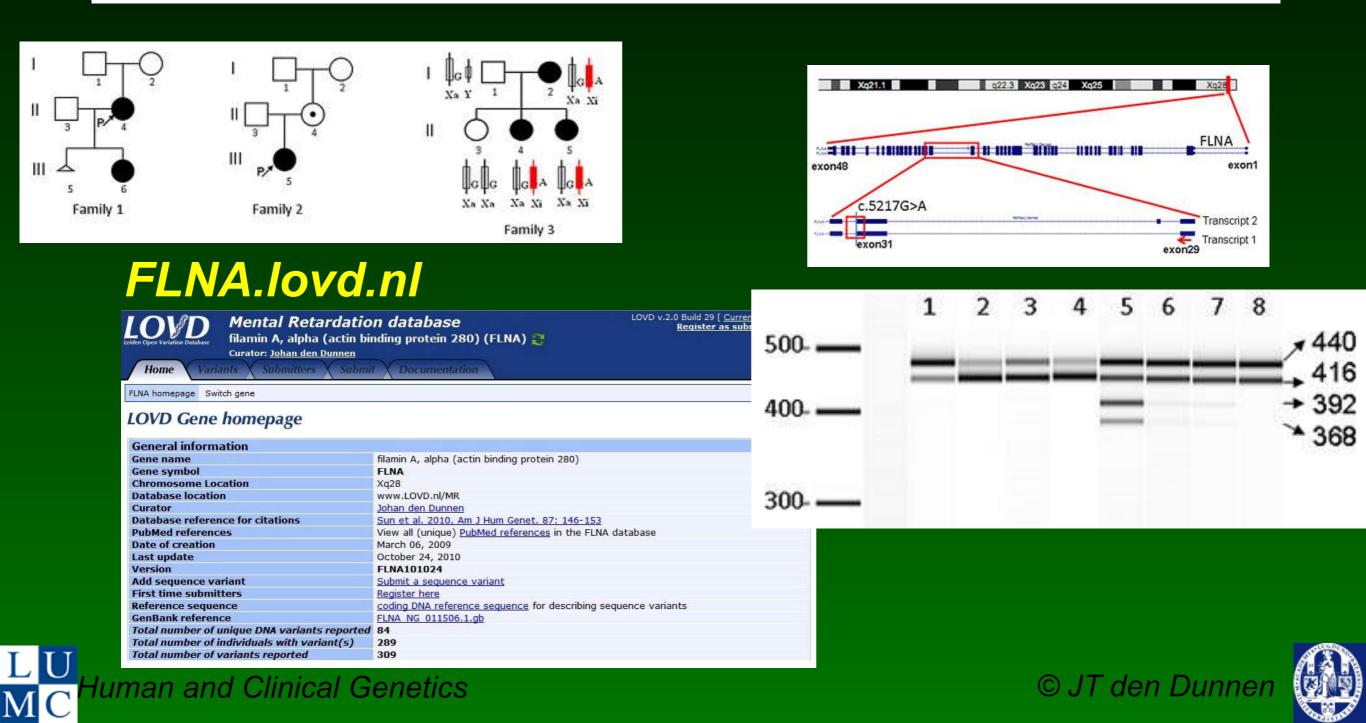
prenatal at risk family muscular dystrophy no definite diagnosis

### found in diagnosis

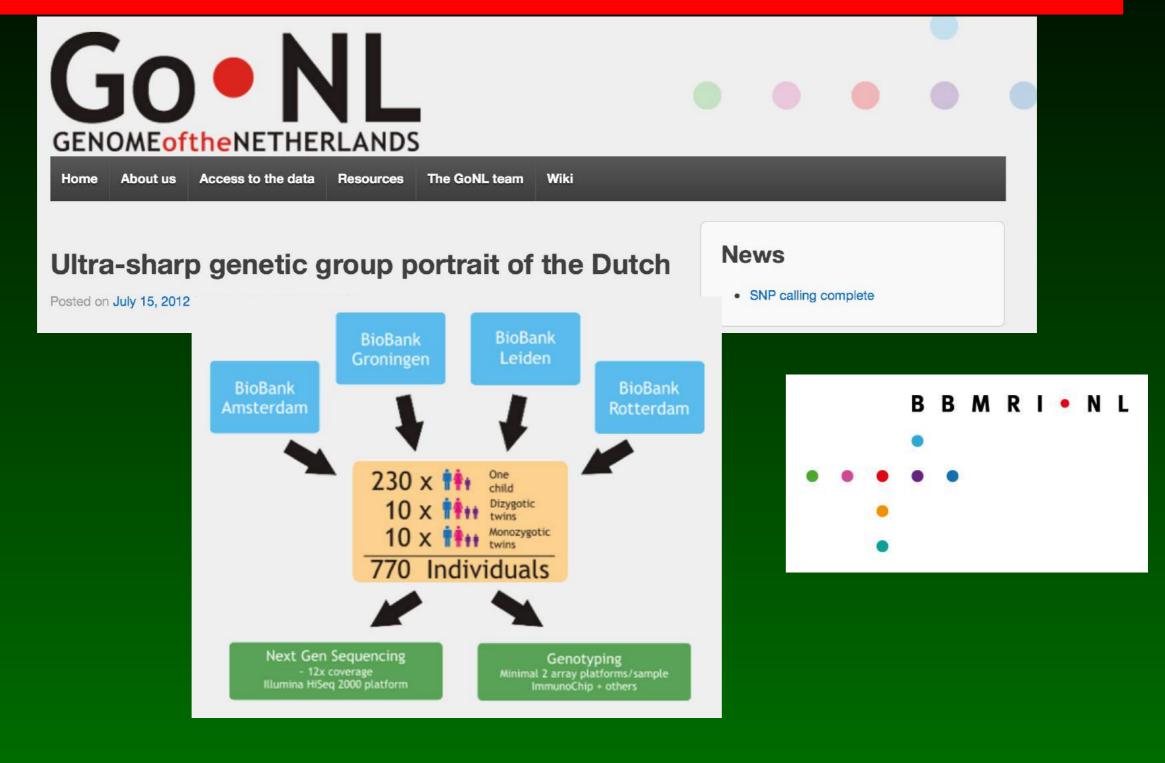
WES, trio analysis male parent 45y, healthy one of many variants



### you may have life saving information, did you realize ?




uman and Clinical Genetics


#### REPORT

#### Terminal Osseous Dysplasia Is Caused by a Single Recurrent Mutation in the FLNA Gene

Yu Sun,<sup>1,11</sup> Rowida Almomani,<sup>1,11</sup> Emmelien Aten,<sup>1</sup> Jacopo Celli,<sup>1</sup> Jaap van der Heijden,<sup>1</sup> Hanka Venselaar,<sup>2</sup> Stephen P. Robertson,<sup>3</sup> Anna Baroncini,<sup>4</sup> Brunella Franco,<sup>5,6</sup> Lina Basel-Vanagaite,<sup>7</sup> Emiko Horii,<sup>8</sup> Ricardo Drut,<sup>9</sup> Yavuz Ariyurek,<sup>1,10</sup> Johan T. den Dunnen,<sup>1,10</sup> and Martijn H. Breuning<sup>1,\*</sup>



# Genomics projects







# Adopt a gene !

### become a foster parent database curator

claim your child at gene.LOVD.nl

essential on your CV ...only ~15,000 available

with 7,000,000,000 people chance 1/400,000











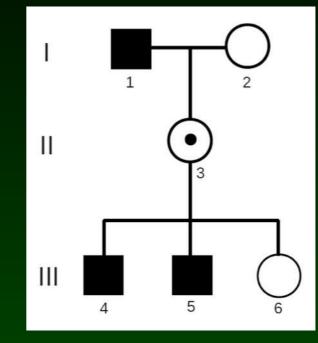
## RNA, it exists !

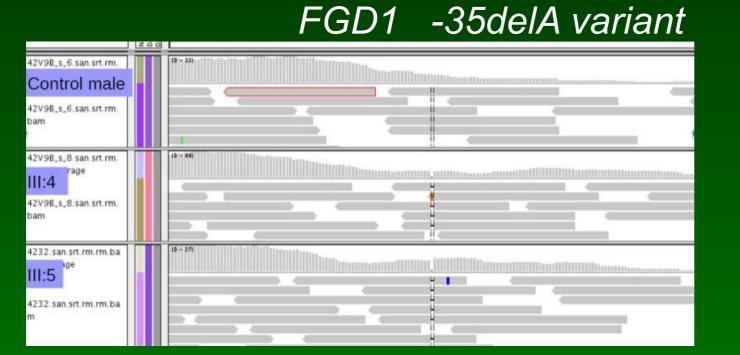
..the neglected molecule

### under-appreciated

### most go blindly DNA > protein

### ..there is much more




# Aarskog-Scott syndrome

 ASS family FGD1 gene screened
> no variants

 whole exome capture no obvious variants
thresholds lowered





#### ©Yu Sun Emmelien Aten





# Aarskog-Scott syndrome

• why FGD1 variant missed ? primer on variant site allowing amplification in males not standard to screen to -50

• exome capture

DNA screen negative: try to analyse RNA !

*lower coverage into intron variant filtering to -10 many additional variants, difficult to confirm* 

### • few branch site variants

*rare easily missed difficult to proof* 





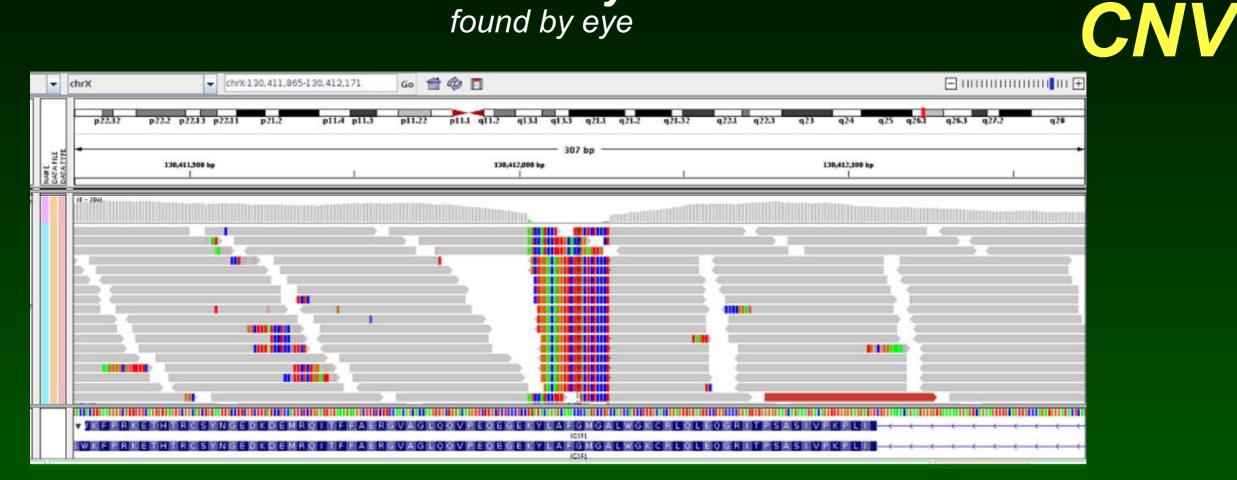
## Predictions

### protein predictions

Start an Analysis with UMD-Predictor



# When you ask a prediction tool something it will always give you an result,


up to you to decide whether to trust the answer





# Pipelines

#### variant missed by software found by eye



### early WES analysis (2009)





#### ©Yu Sun

# Pipelines

#### later version

| Help             |          |                          |                           |                          |                   |                       |                       |           |
|------------------|----------|--------------------------|---------------------------|--------------------------|-------------------|-----------------------|-----------------------|-----------|
| •                | d        | chrX 👻 ch                | 1%130,411,965-130,412,171 | Go 👚 🧼 🗖                 |                   |                       | E 11                  |           |
|                  |          | p2232 p222 p2233 p223    | 1 p21.2 p11.4 p11.3       | p11.22 p11.1 q11.2 q13.1 | q13.3 q21.1 q21.2 | q21.32 q22.1 q22.3 q2 | 3 q24 q25 q26.3 q26.3 | q27.2 q28 |
| NAME<br>DATA FLE | DELATYFE | a<br>130,411,500 bp<br>I | 1                         | 130,412,000<br>I         | - 307 bp          | L.                    | 130,412,300 bp        |           |
|                  |          |                          |                           |                          |                   |                       |                       |           |
|                  |          |                          |                           |                          |                   |                       |                       |           |





#### ©Yu Sun

# Pipelines

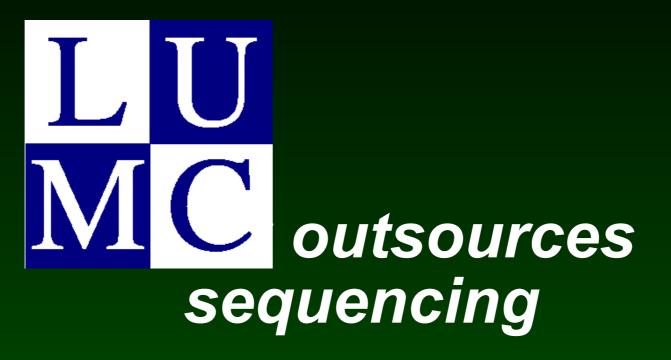
## Loss-of-function mutations in *IGSF1* cause an X-linked syndrome of central hypothyroidism and testicular enlargement

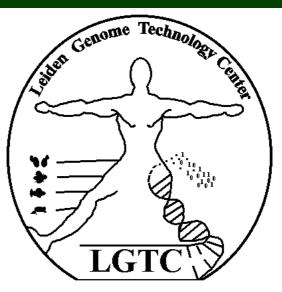
Yu Sun<sup>1,20</sup>, Beata Bak<sup>2,20</sup>, Nadia Schoenmakers<sup>3,20</sup>, A S Paul van Trotsenburg<sup>4,20</sup>, Wilma Oostdijk<sup>5</sup>, Peter Voshol<sup>3</sup>, Emma Cambridge<sup>6</sup>, Jacqueline K White<sup>6</sup>, Paul le Tissier<sup>7,8</sup>, S Neda Mousavy Gharavy<sup>7</sup>, Juan P Martinez-Barbera<sup>7</sup>, Wilhelmina H Stokvis-Brantsma<sup>5</sup>, Thomas Vulsma<sup>4</sup>, Marlies J Kempers<sup>4,9</sup>, Luca Persani<sup>10,11</sup>, Irene Campi<sup>10,12</sup>, Marco Bonomi<sup>11</sup>, Paolo Beck-Peccoz<sup>10,12</sup>, Hongdong Zhu<sup>13</sup>, Timothy M E Davis<sup>13</sup>, Anita C S Hokken-Koelega<sup>14</sup>, Daria Gorbenko Del Blanco<sup>14</sup>, Jayanti J Rangasami<sup>15</sup>, Claudia A L Ruivenkamp<sup>1</sup>, Jeroen F J Laros<sup>1</sup>, Marjolein Kriek<sup>1</sup>, Sarina G Kant<sup>1</sup>, Cathy A J Bosch<sup>1</sup>, Nienke R Biermasz<sup>16</sup>, Natasha M Appelman-Dijkstra<sup>16</sup>, Eleonora P Corssmit<sup>16</sup>, Guido C J Hovens<sup>16</sup>, Alberto M Pereira<sup>16</sup>, Johan T den Dunnen<sup>1,17</sup>, Michael G Wade<sup>18</sup>, Martijn H Breuning<sup>1</sup>, Raoul C Hennekam<sup>4</sup>, Krishna Chatterjee<sup>3,21</sup>, Mehul T Dattani<sup>19,21</sup>, Jan M Wit<sup>5,21</sup> & Daniel J Bernard<sup>2,21</sup>

NATURE GENETICS VOLUME 44 | NUMBER 12 | DECEMBER 2012

to check we feed pipeline with an artificial reference sequence and artificial variants

#### final evidence came from


#### mouse (no phenotype) additional families


| LOVD X-chromosome gel<br>Immunoglobulin superfa<br>Curator: Yu Sun | ne database LOVD v.2.0 Build 36 [ Current LOVD status Register as submitter   Log i mily, member 1 (IGSF1) 🐉                                                                                              |  |  |  |  |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Home Variants Submitters Submit                                    | Documentation                                                                                                                                                                                             |  |  |  |  |
| IGSF1 homepage Switch gene                                         |                                                                                                                                                                                                           |  |  |  |  |
| LOVD Gene homepage                                                 |                                                                                                                                                                                                           |  |  |  |  |
| General information                                                |                                                                                                                                                                                                           |  |  |  |  |
| Gene name                                                          | Immunoglobulin superfamily, member 1                                                                                                                                                                      |  |  |  |  |
| Gene symbol                                                        | IGSF1                                                                                                                                                                                                     |  |  |  |  |
| Chromosome Location                                                | Xq26.2<br>www.LOVD.nl/MR                                                                                                                                                                                  |  |  |  |  |
| Database location                                                  |                                                                                                                                                                                                           |  |  |  |  |
| Curator                                                            | Yu Sun                                                                                                                                                                                                    |  |  |  |  |
| PubMed references                                                  | View all (unique) PubMed references in the IGSF1 database                                                                                                                                                 |  |  |  |  |
| Date of creation                                                   | March 06, 2009                                                                                                                                                                                            |  |  |  |  |
| Last update                                                        | October 24, 2015                                                                                                                                                                                          |  |  |  |  |
| Version                                                            | IGSF1 151024                                                                                                                                                                                              |  |  |  |  |
| Add sequence variant                                               | Submit a sequence variant                                                                                                                                                                                 |  |  |  |  |
| First time submitters                                              | Register here                                                                                                                                                                                             |  |  |  |  |
| Reference sequence file                                            | coding DNA reference sequence for describing sequence variants                                                                                                                                            |  |  |  |  |
| Genomic refseq ID                                                  | NG 021190.1                                                                                                                                                                                               |  |  |  |  |
| Transcript refseq ID                                               | NM 001170961.1                                                                                                                                                                                            |  |  |  |  |
| Exon/intron information                                            | Exon/intron information table                                                                                                                                                                             |  |  |  |  |
| Total number of unique DNA variants reported                       | 22                                                                                                                                                                                                        |  |  |  |  |
| Total number of individuals with variant(s)                        | 193                                                                                                                                                                                                       |  |  |  |  |
| Total number of variants reported                                  | 193                                                                                                                                                                                                       |  |  |  |  |
| Subscribe to updates of this gene                                  |                                                                                                                                                                                                           |  |  |  |  |
| NOTE                                                               | The work leading to the establishment of these LSDBs was supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement $n^{5/2}$ 200754 - the GENZPHEN protect. |  |  |  |  |

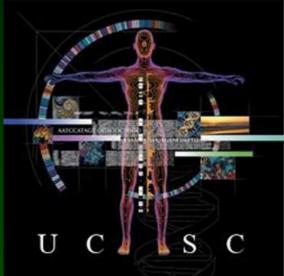




Sequencing






focus on development





## Genome browsers

### wonderful tools, free for everybody where would we be without them

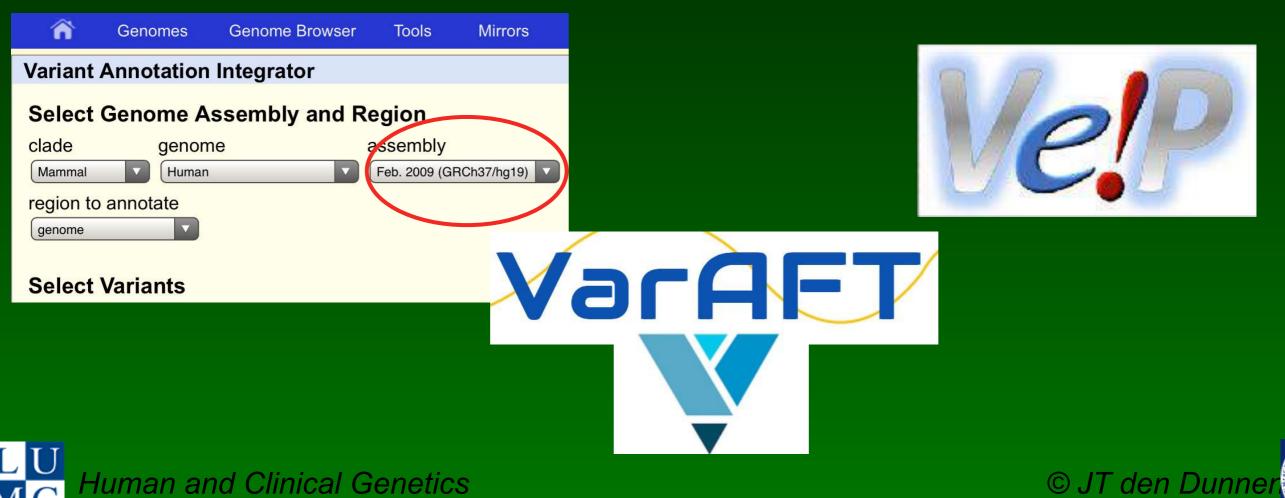




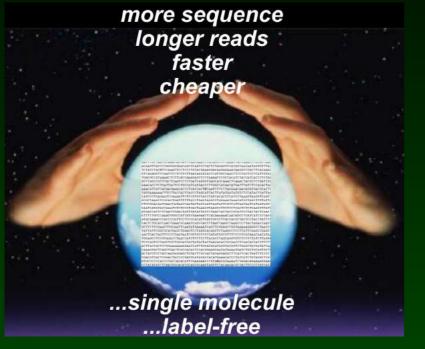
### Bob & Ben, we like their tool very much

( ...we did not ask them to compare the two )






## Variant classification


### standards for classification ACMG recommendations labs start sharing classifications

### ACMG:

"beware of variants that may impact splicing"



# Future technology



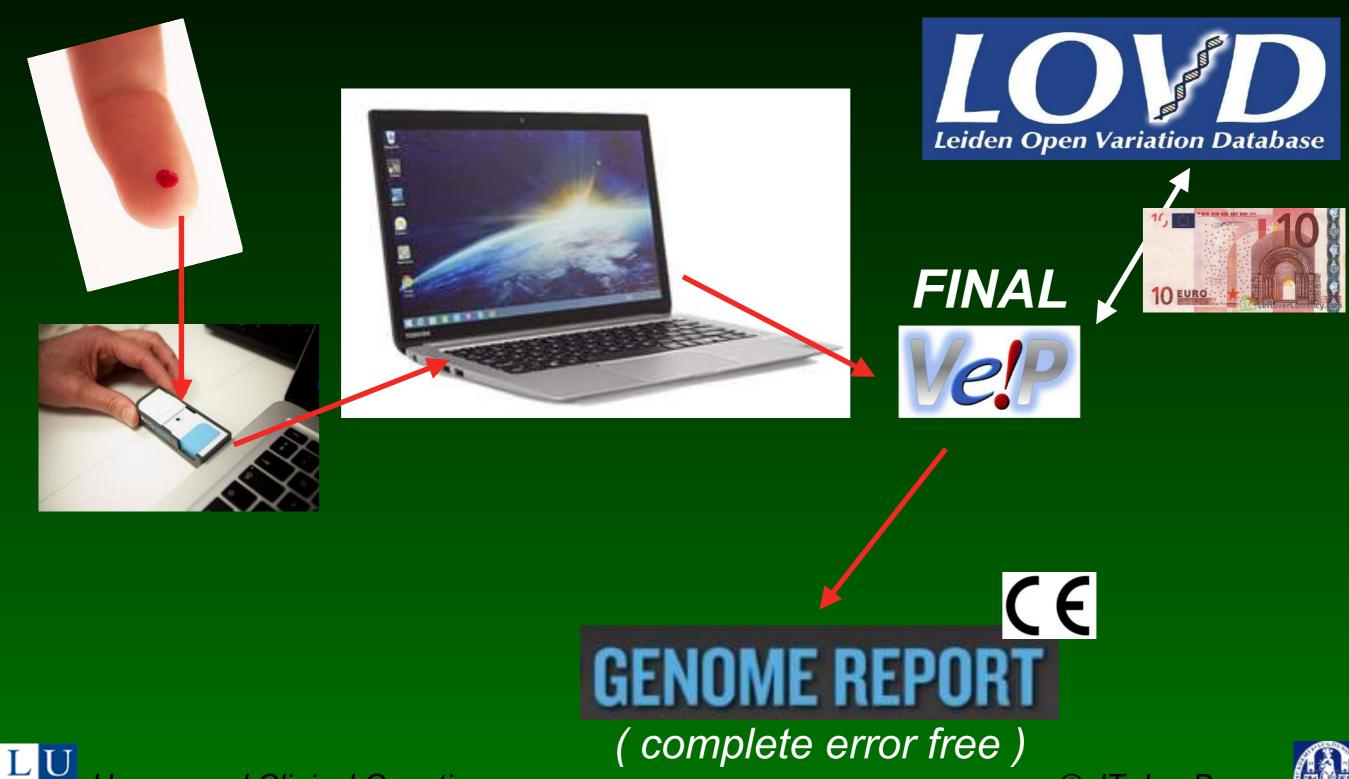
more sequence longer reads faster cheaper

higher coverage better alignment (de novo assembly) fewer & better databases improved predictions





## Predictions


## ...it is good we can not yet trust predictions

## ( dangerous tools, eventually they will take over your job )



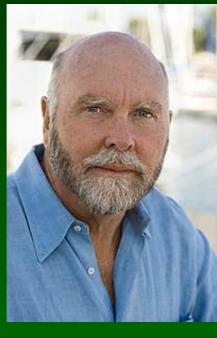


## Future VEP



**M**C Human and Clinical Genetics

© JT den Dunner


# Focus on disease



James Watson

### (individual genomes sequenced)

#### JLupsky, Kim, GChurch, DTutu, JFlattery, MSnyder,



Craig Venter





Marjolein Kriek



2008



## A rumour

#### female DNA finally sequenced

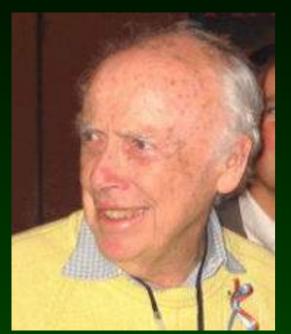


© 2008 Lectrr.be - Eerder verschenen in Metro.

*"here the defective gene for parking a car backwards"* 








#### Scientists crack women's DNA code

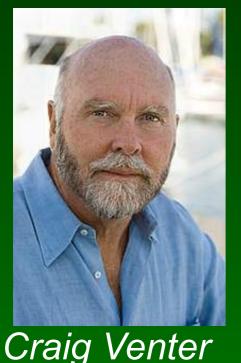
FINALLY, men may be able to understand women, it seems. Dutch scientists said they have mapped the full genetic sequence of an individual woman's DNA for the first time.

Researchers at Leiden University Medical Centre said they had sequenced the genome of one of their researchers, geneticist Marjolein Kriek, and plan to publish it after review. 27/05/2008 3:15:32 PM post id: 3604572

# Focus on disease



James Watson


### (individual genomes sequenced)

#### JLupsky, Kim, GChurch, DTutu, JFlattery, MSnyder,

Marjolein Kriek

2008





conclusion 'sick' much easier then 'healthy'





Human and Clinical Genetics

# VEPTC | 27 - 30 Aug. 2018 NUMed, Johor, Malaysia





Scientific Programme

Prof. Johan T. den Dunnen (Leiden, Nederland) CHAIR Prof. Chris Baldwin (NUMed, Malaysia) LOCAL ORGANISER Dr Andreas Laner (Munich, Germany) Prof. Poh San Lai (NUS, Singapore)

### next course ?

- 1998 ...
- 2000 Leeds (UK)
- 2002 Montpellier (FR)
- 2004 Newcastle (UK)
- 2006 Leiden (NL)
- 2008 Rotterdam (NL)
- 2016 Heraklion (GR)
- 2017 Prague (CZ)
- 2018 Johor (MY)
- 2019 ...





## Evaluation

• how was the course ?

• topics missing ?

• format ? length demos



