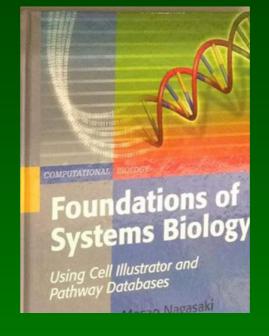


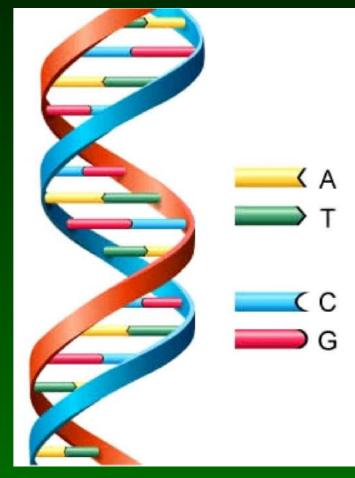


DNA turns...

advertisement

did you pay attention at school?




PrimBio

Certified NGS Services Low Cost, Fast Turnaround

correct!

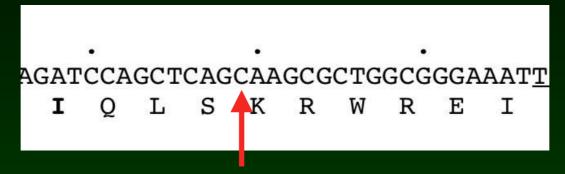
Functional assays

confirm predicted consequences

tinyurl.com / VEPTC2018-19

Johan den Dunnen

The question


I found a variant and want to know whether it may be related to the health problems I see in the individual

What can I try in the lab??

(not computer predictions)

Share!!

DMD gene

c.5859C>T r.(?) p(Ser1953=)

found in diagnosis

prenatal at risk family muscular dystrophy no definite diagnosis

found in diagnosis

WES, trio analysis male parent 45y, healthy one of many variants

you may have life saving information, did you realize?

Database submission 1st

first example,

many should follow

VOLUME 46 | NUMBER 2 | FEBRUARY 2014

100

Loss-of-function mutations in *MICU1* cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling

Clare V Logan^{1,15}, György Szabadkai^{2,3,15}, Jenny A Sharpe^{2,15}, David A Parry¹, Silvia Torelli⁴, Anne-Marie Childs⁵, Marjolein Kriek⁶, Rahul Phadke^{4,7}, Colin A Johnson¹, Nicola Y Roberts¹,

David T Bonthron¹, Karen A Pysden⁵, Tamieka Whyte⁴, Iulia Munteanu⁴, A Reghan Foley⁴, Gabrielle Wheway¹, Katarzyna Szymanska¹, Subaashini Nata
Gijs W E Santen⁶, Erik H Niks⁹, W Ludo

Helen Roper⁸,
Diego De Stefani³,

Gijs W E Santen⁶, Erik H Niks⁹, W Ludo Johan T den Dunnen⁶, Yu Sun⁶, Ieke Gin UK10K Consortium¹⁴, Michael R Duche

Leiden Muscular Dystrophy pages Mitochondrial calcium uptake 1 (MICU1) 2 Curator: Johan den Dunnen LOVD - Variant listings About this overview [Show] Patient data (#0030375) Phenotype dystrophy, muscular, limb-girdle Phenotype additional Reference 2-generation family, brother-1, Netherlands: Leiden Remarks Geographic origin Netherlands **Ethnic origin** Gender **Inheritance** familial, autosomal recessive Consanguinity **Date created** Fam Pat 1(2) # reported 2013-05-21 21:46:21 CK level **Protein data** Submitter Marjolein Kriek

Variant data		
Allele	Paternal (confirmed)	
Reported pathogenicity	Probably pathogenic	
Concluded pathogenicity	Unknown	
Exon	8i	
DNA change	c.741+1G>A (View in UCSC Genome Browser, Ensembl)	
Var_pub_as	-	
RNA change	r.741_742ins741+1_741+155{741+1g>a}	
Protein change	p.Val248Thrfs*9	
DB-ID	MICU1 00001	
Variant remarks	whole exome sequencing; fibroblast RNA; NOTE: causality	
	MICU1 variants not absolutely proven, yet highly likely	
Genet_ori	germline (inherited)	
Segregation	yes	
Reference	-	
Template	DNA, RNA	
Technique	RT-PCR, SEQ, NGS-I	

Topics

- share first, then...
- analyse cells / tissue
- RNA consequences
- protein consequences
- animal model
- •
- (not computer predictions)

The sample

blood

DNA collected, sample also contains...

RNA protein

cells

-use the opportunity

-get new sample difficult

-store

Tissues

• analyse tissue from the patient works for cancer, rare in other cases e.g muscle biopsy

• look abnormal structures

e.g. LMNA irregular shaped nucleus

...required for expression cloning

stain
 protein (antibody)
 abnormal amount / location / ...
 RNA (probe)
 abnormal amount / location / ...

MNA mutant

Control

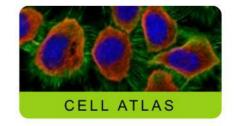
Tissues

• effects can be direct or indirect

effect is full-genome

influenced by all other variants in genome

> proof by adding 1 variant to known genome


Proteins

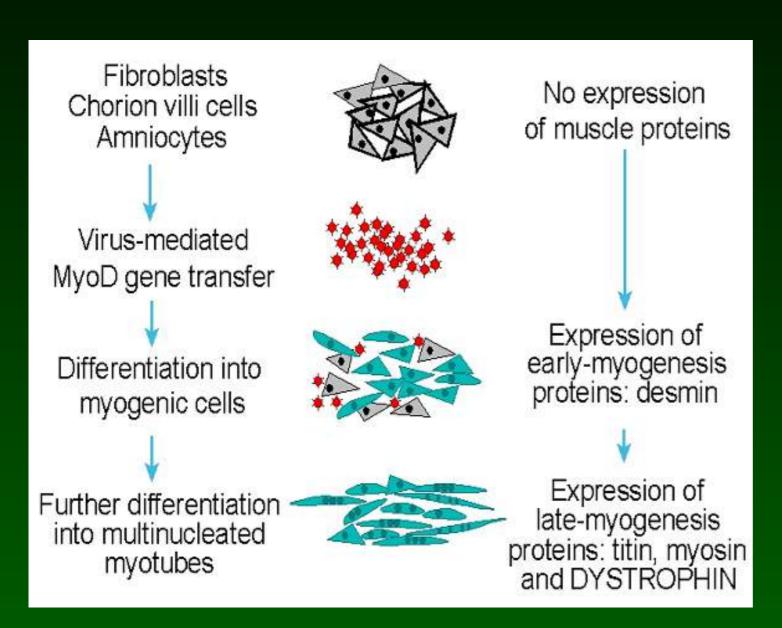
THE HUMAN PROTEIN ATLAS

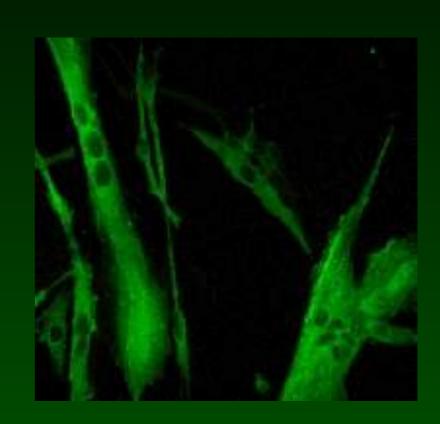
www.proteinatlas.org

antibodies

Tissues / cells

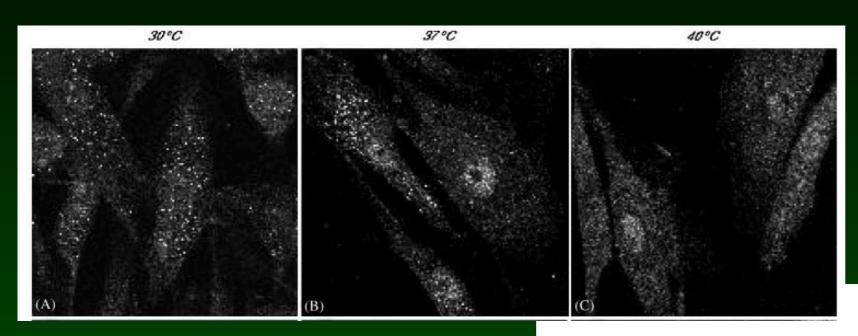
- isolate DNA, RNA, protein
- cell extract / purified protein measure activity (enzyme)
- protein
 detect amount / size (antibody)
 (co-)immunoprecipitation, ...
- RNA


detect amount / size (probe)
study expression profile
Protein Truncation Test = make protein


Patient cells

- cell culturing grow under specific conditions, test function
- complementation
 fuse cells, problem remains/solved ?
 Fanconi anemia, peroxisomal genes, ...
- expression cloning express wt sequence in cell: normalised?
- ...tissue specific expression reprogram cell myoD transfection > muscle cell IPS > lineage specific culturing

MyoD differentiation


make 'muscle' cells from any cell

DMD/BMD diagnosis

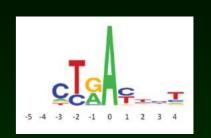
T-sensitive

HUMAN MUTATION 24:130-139 (2004)

low T: dampens
high T: exaggerates

RESEARCH ARTICLE

Identification of the Molecular Defect in Patients With Peroxisomal Mosaicism Using a Novel Method Involving Culturing of Cells at 40°C: Implications for Other Inborn Errors of Metabolism


Jeannette Gootjes, ¹ Frank Schmohl, ¹ Petra A.W. Mooijer, ² Conny Dekker, ² Hanna Mandel, ³ Meral Topcu, ⁴ Martina Huemer, ⁵ M. von Schütz, ⁶ Thorsten Marquardt, ⁷ Jan A. Smeitink, ⁸ Hans R. Waterham, ² and Ronald J.A. Wanders ^{1,2*}

Normal cells

- expression cloning variant dominant effect endogenous gene not expressed overexpression (recessive effects)
- destroy normal gene (CRISPR/Cas)
 effect detectable ?
 express variant; compensation ?
- express specific protein domain only simpler expressed e.g DNA binding domain BRCA1 protein

RNA

 effect on structure / integrity pre mRNA splicing splice site (SD, SA), branchpoint, ESE / ESS / ISE / ISS

 altered stability / turnover cap-site, polyA adddition (signal, site) folding, miRNA binding

• altered translation dynamics codon usage (rare/frequent codon) effect on co-translational protein folding

UUU F 0.46 UCU S 0.19 UAU Y 0.44 UGU C 0.46
UUC F 0.54 UCC S 0.22 UAC Y 0.56 UGC C 0.54
UUA L 0.08 UCA S 0.15 UAA * 0.30 UGA * 0.47
UUG L 0.13 UCG S 0.05 UAG * 0.24 UGG W 1.00

CUU L 0.13 CCU P 0.29 CAU H 0.42 CGU R 0.08
CUC L 0.20 CCC P 0.32 CAC H 0.58 CGC R 0.18
CUA L 0.07 CCA P 0.28 CAA Q 0.27 CGA R 0.11
CUG L 0.40 CCG P 0.11 CAG Q 0.73 CGG R 0.20

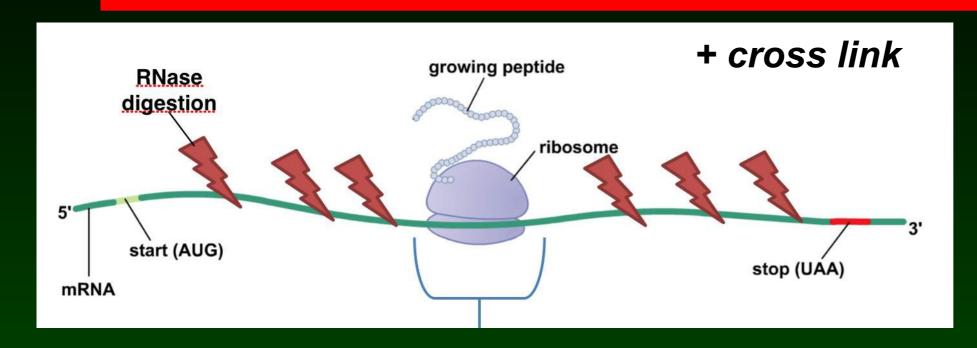
AUU I 0.36 ACU T 0.25 AAU N 0.47 AGU S 0.15
AUC I 0.47 ACC T 0.36 AAC N 0.53 AGC S 0.24
AUA I 0.17 ACA T 0.28 AAA K 0.43 AGA R 0.21
AUG M 1.00 ACG T 0.11 AAG K 0.57 AGG R 0.21

GUU V 0.18 GCU A 0.27 GAU D 0.46 GGU G 0.16
GUC V 0.24 GCC A 0.40 GAC D 0.54 GGC G 0.34
GUA V 0.12 GCA A 0.23 GAA E 0.42 GGA G 0.25
GUG V 0.46 GCG A 0.11 GAG E 0.58 GGG G 0.25

[Codon/a.a./fraction per codon per a.a.]
Homo sapiens data from the Codon Usage Database

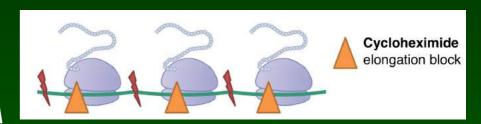
suggested reading, before starting

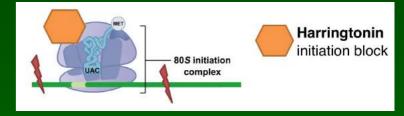
RESEARCH ARTICLE


Human Mutation

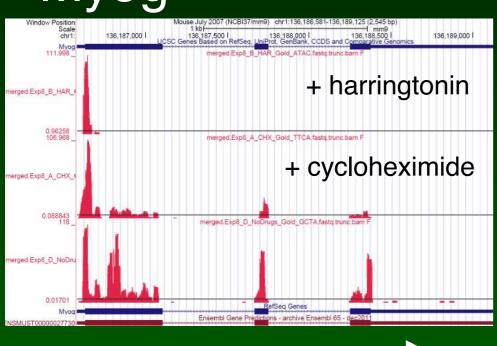
Guidelines for Splicing Analysis in Molecular Diagnosis
Derived from a Set of 327 Combined *In Silico/In Vitro*Studies on *BRCA1* and *BRCA2* Variants

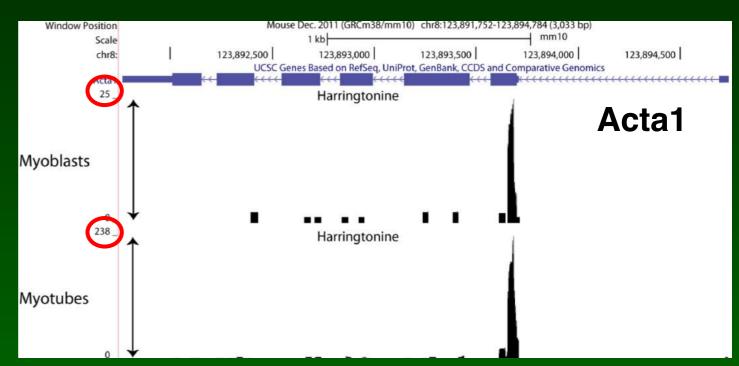
Claude Houdayer, 1* Virginie Caux-Moncoutier, 1 Sophie Krieger, 2 Michel Barrois, 3 Françoise Bonnet, 4 Violaine Bourdon, 5 Myriam Bronner, 6 Monique Buisson, 7 Florence Coulet, 8 Pascaline Gaildrat, 9 Cédrick Lefol, 10 Mélanie Léone, 11 Sylvie Mazoyer, 7 Danielle Muller, 12 Audrey Remenieras, 3 Françoise Révillion, 13 Etienne Rouleau, 10 Joanna Sokolowska, 6 Jean-Philippe Vert, 14 Rosette Lidereau, 10 Florent Soubrier, 8 Hagay Sobol, 5 Nicolas Sevenet, 4 Brigitte Bressac-de Paillerets, 3, 15 Agnès Hardouin, 2 Mario Tosi, 9 Olga M. Sinilnikova, 7, 11 and Dominique Stoppa-Lyonnet, 1, 16


culture cells with/without cycloheximide (inhibit NMD)

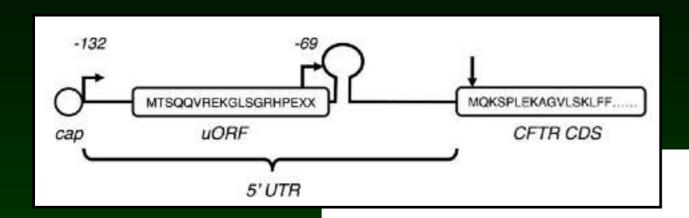


©Eleonora de Klerk


isolate ribosomes
 measure actively translated RNA
 +/- antibiotics
 cycloheximide, block elongation
 harringtonin, blocks initiation



Atf4


expression stable, translation upregulated 10x

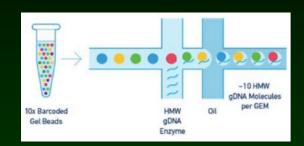
• discovery (gene annotation)
define start codon
determine protein coding regions
determine reading frame used
is RNA translated? (identify ncRNA)
detect uORFs
equals RNA expression protein
expression?

analysis (diagnostics)
 ATG variants (creating or destroying)
 uORF variants (creating or destroying)

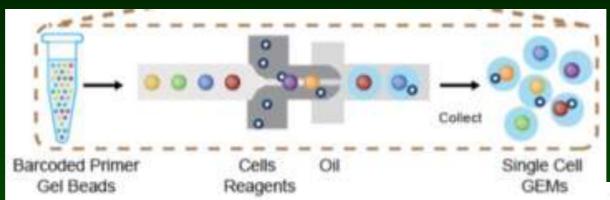
Human Molecular Genetics, 2015, Vol. 24, No. 4 899–912 doi:10.1093/hmg/ddu501 Advance Access published on September 30, 2014

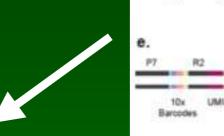
CFTR mRNA expression is regulated by an upstream open reading frame and RNA secondary structure in its 5' untranslated region

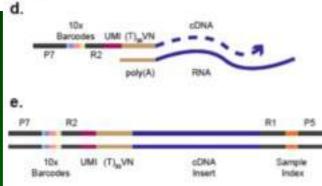
Samuel W. Lukowski^{1,2,†,*}, Joseph A. Rothnagel¹ and Ann E. O. Trezise^{1,2}

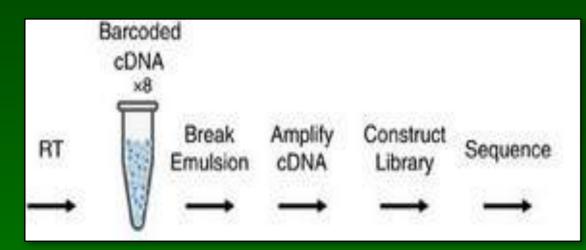

influence process > increase protein expression

> treat CF-patients




Single cell

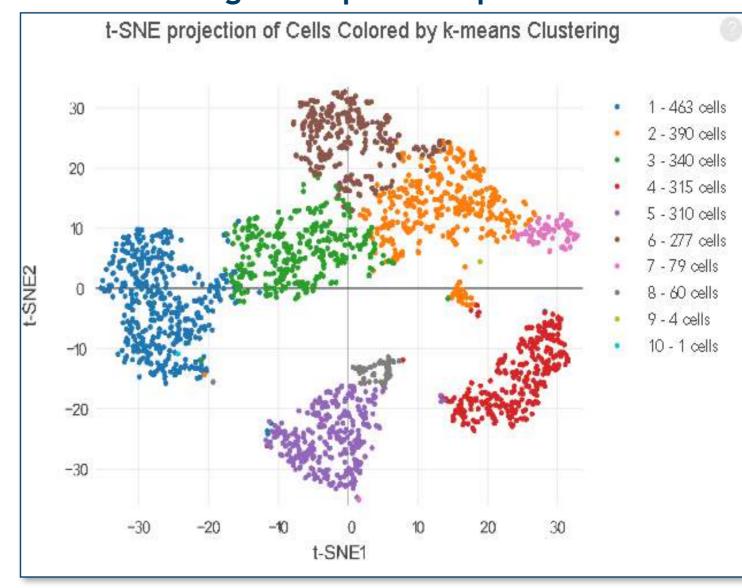



mix DNA + unique barcodes mix single cells + unique barcodes

RT-PCR

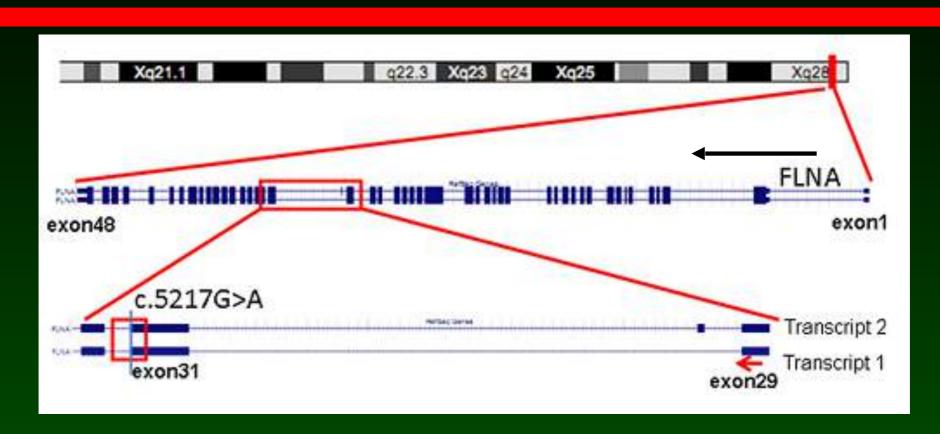
amplify, pool, sequence

same barcode = same cell


First experiment

CELL RANGER

Using the Cell Ranger R package cluster cells based on differential gene expression patterns

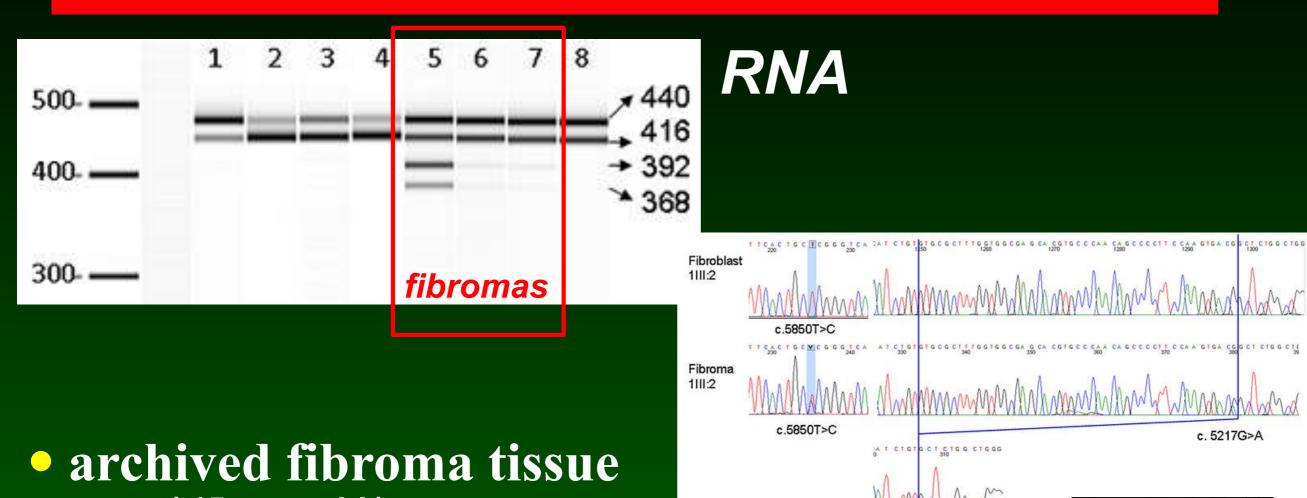

Estimated Number o	f Cells
	n Genes per Cell 1,128
Sequencing	
Number of Reads	23,464,741
Valid Barcodes	93.0%
Reads Mapped Confidently to Transcriptome	68.9%
Reads Mapped Confidently to Exonic Regions	72.9%
Reads Mapped Confidently to Intronic Regions	7.8%
Reads Mapped Confidently to Intergenic Region	ıs 2.6%
Sequencing Saturation	22.5%
Q30 Bases in Barcode	75.5%
Q30 Bases in RNA Read	76.6%
Q30 Bases in Sample Index	85.9%
Q30 Bases in UMI	78.4%

RNA splicing

- expression cloning clone exon(s) in splice construct transfect and express (cell line) analyse splice products generated
- NOTE TEMPERATURE artificial situation
 - not complete gene/intron expression in other cell type (tissue specificity)
- RNA of patient preferable cell line, biopsy, ...

TOD X-exome.

- variant last nucleotide exon alters splicing!?
- RNA expression


 cultured cells / blood

 100% X_i, only normal allele expressed

 X_i always "affected chromosome"

Sun et al. 2010

TOD X-exome

archived fibroma tissue
 (15 year old)
 both alleles expressed
 activated cryptic exonic splice site

Sun et al. 2010 Am.J.Hum.Genet. 87: 146

X-linked TOD₄

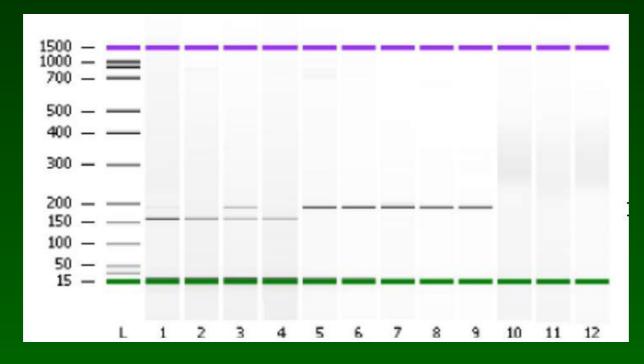
- FLNA gene a surprise?

 first FLNA mutations published
 the obvious candidate for TOD
 phenotypic overlap
- 2004 gene analysed sent to expert > nothing reported back c.5217G>A was detected in vitro splice test negative
- case could be solved 6 years before

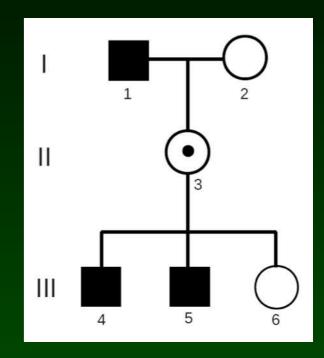
We need to share & report ALL variants, immediately

Aarskog-Scott syndrome

- Aarskog-Scott syndrome
 FGD1 gene screened
 no variants
- whole exome capture no obvious variants lower thresholds


©Yu Sun Emmelien Aten

intron -35delA variant



Aarskog-Scott syndrome

- FGD1 intron -35delA variant predicted branch site
- RNA analysis expressed in blood / fibroblasts

PPCP controls

©Yu Sun Emmelien Aten

Aarskog-Scott syndrome

- why FGD1 variant missed?

 primer on variant site

 not standard to screen to -50
- exome capture
 lower coverage into intron
 variant filtering to -10
 many additional variants
 difficult to confirm
- few branch site variants rare, easily missed, difficult to proof

Aarskog—Scott Syndrome

Emmelien Aten, 1+ Yu Sun, 1+ Rowida Almomani, 1 Gijs W.E. Santen, 1 Tobias Messemaker, 1 Saskia M. Maas, 2

Martijn H. Breuning, 1 and Johan T. den Dunnen 1*

Mental Retardation database
FYVE, RhoGEF and PH domain containing 1 (FGD1)

Welcome, Johan den Dunnen
Your account | Log ou
Curators Johan den Dunnen and Gurator vacancy
Home

LOVD Gene homepage

General information
Gene name
Gene symbol
Chromosome Location
Database location
Database location
Curator
Database location
Curator
Database location
Curator
Database location
Database location
Curator
Database location
Curator
Database location
Database location
Database location
Curator
Database location
Database location
Curator
Database location
Database location
Curator
Database location
Database location
Database location
Curator
Database location
Dat

Register here

FGD1 NG 008054.1.qb

BRIEF REPORT

Exome Sequencing Identifies A Branch Point Variant in

www.LOVD.nl/FGD1

Genomic reference sequence for describing sequence varia

The work leading to the establishment of these LSDBs was supported by the Europ Community's Seventh Framework Programme (FP7/2007-2013) under grant agreem

Human Mutation

exome performed, RNA analysis would be simpler ...& much cheaper

Animal models

 time consuming & costly mouse / rat zebra fish Drosophila C.elegans yeast

• existing models?

large international projects KO all genes

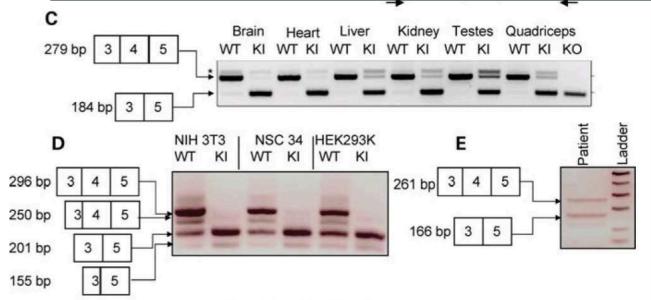
Mouse model

 existing model > "no" phenotype realise not everything can be tested patient data > specific phenotyping

NATURE GENETICS VOLUME 44 | NUMBER 12 | DECEMBER 2012

Loss-of-function mutations in *IGSF1* cause an X-linked syndrome of central hypothyroidism and testicular enlargement

Yu Sun^{1,20}, Beata Bak^{2,20}, Nadia Schoenmakers^{3,20}, A S Paul van Trotsenburg^{4,20}, Wilma Oostdijk⁵, Peter Voshol³, Emma Cambridge⁶, Jacqueline K White⁶, Paul le Tissier^{7,8}, S Neda Mousavy Gharavy⁷, Juan P Martinez-Barbera⁷, Wilhelmina H Stokvis-Brantsma⁵, Thomas Vulsma⁴, Marlies J Kempers^{4,9}, Luca Persani^{10,11}, Irene Campi^{10,12}, Marco Bonomi¹¹, Paolo Beck-Peccoz^{10,12}, Hongdong Zhu¹³, Timothy M E Davis¹³, Anita C S Hokken-Koelega¹⁴, Daria Gorbenko Del Blanco¹⁴, Jayanti J Rangasami¹⁵, Claudia A L Ruivenkamp¹, Jeroen F J Laros¹, Marjolein Kriek¹, Sarina G Kant¹, Cathy A J Bosch¹, Nienke R Biermasz¹⁶, Natasha M Appelman-Dijkstra¹⁶, Eleonora P Corssmit¹⁶, Guido C J Hovens¹⁶, Alberto M Pereira¹⁶, Johan T den Dunnen^{1,17}, Michael G Wade¹⁸, Martijn H Breuning¹, Raoul C Hennekam⁴, Krishna Chatterjee^{3,21}, Mehul T Dattani^{19,21}, Jan M Wit^{5,21} & Daniel J Bernard^{2,21}


Not like this

Human Molecular Genetics, 2012, Vol. 21, No. 4 doi:10.1093/hmg/ddr512 Advance Access published on November 7, 2011

Modeling the human *MTM1* p.R69C mutation in murine *Mtm1* results in exon 4 skipping and a less severe myotubular myopathy phenotype

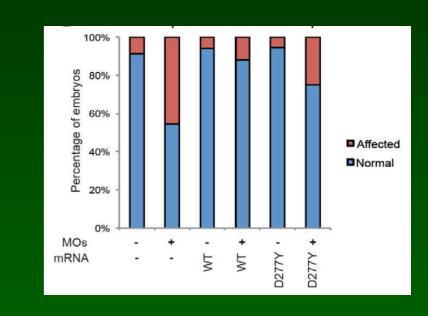
Christopher R. Pierson^{1,2,4,*}, Ashley N. Dulin-Smith¹, Ashley N. Durban¹, Morgan L. Mar Jordan T. Marshall¹, Andrew D. Snyder¹, Nada Naiyer¹, Jordan T. Gladman¹, Dawn S. Chandler^{1,3,4}, Michael W. Lawlor^{5,†}, Anna Buj-Bello⁶, James J. Dowling⁷ and Alan H. Beggs^{5,*}

- unclear missense effect mouse model generated
 - > no protein in mouse
 - > RNA analysis shows splice effect
 - > confirmed in human

Zebrafish

• gene KO

 embryos morpholino injection downregulate expression co-expression gene (RNA)

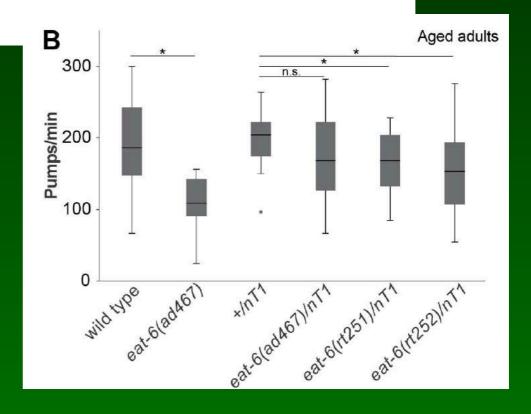

Control

nnt-a/nnt-b MOs

(Circ Cardiovasc Genet. 2015;8:544-552.

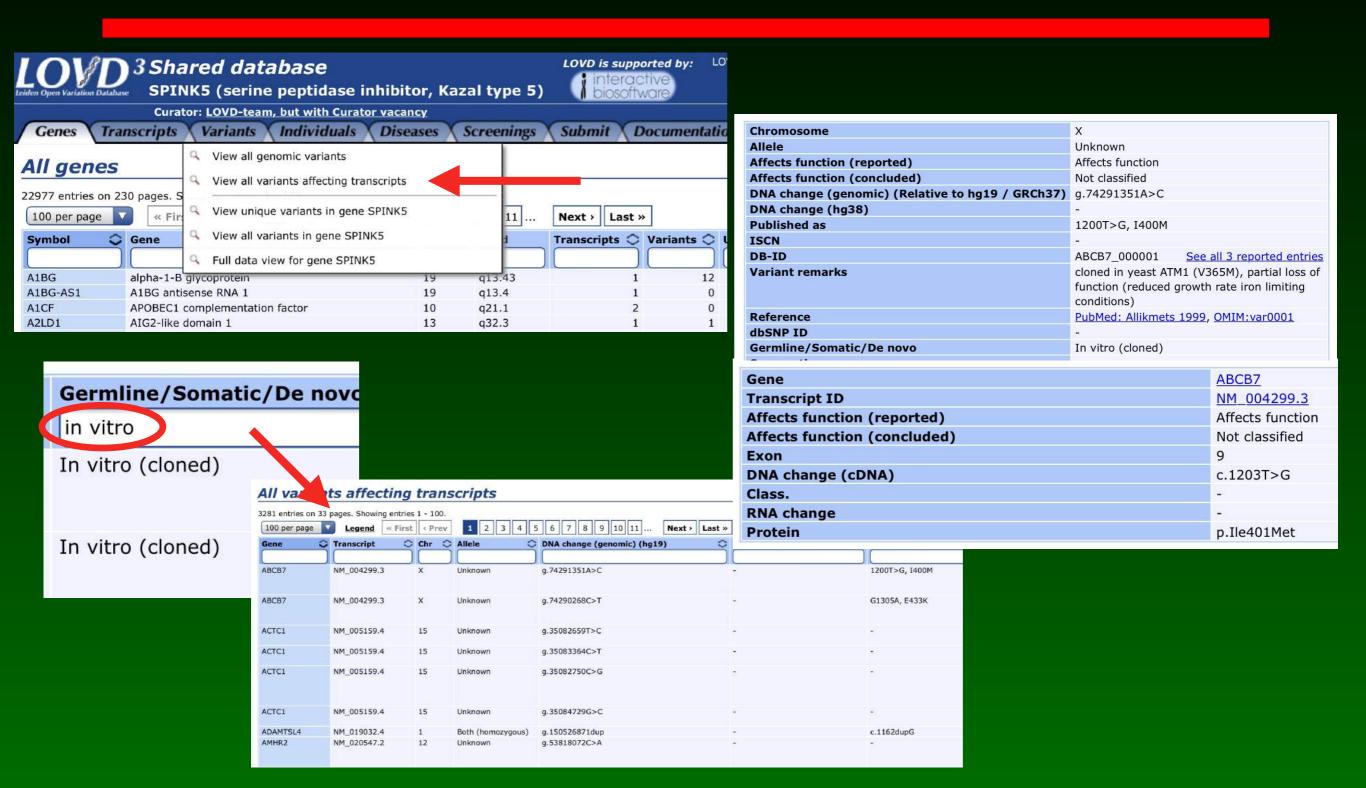
Loss of Function Mutations in NNT Are Associated With Left Ventricular Noncompaction

Matthew N. Bainbridge, PhD*; Erica E. Davis, PhD*; Wen-Yee Choi, PhD; Amy Dickson, BS; Hugo R. Martinez, MD; Min Wang, PhD; Huyen Dinh, PhD; Donna M. Muzny, MS; Ricardo Pignatelli, MD; Nicholas Katsanis, PhD; Eric Boerwinkle, PhD; Richard A. Gibbs, PhD; John L. Jefferies, MD


C. elegans

 knock-out / knock-in normal development? measure specific features

PLoS One. 2016 Dec 9;11(12):e0167963. doi: 10.1371/journal.pone.0167963. eCollection 2016.


In Vivo Modelling of ATP1A3 G316S-Induced Ataxia in C. elegans Using CRISPR/Cas9-Mediated Homologous Recombination Reveals Dominant Loss of Function Defects.

Sorkaç A¹, Alcantara IC¹, Hart AC¹.

Databases

Colleagues

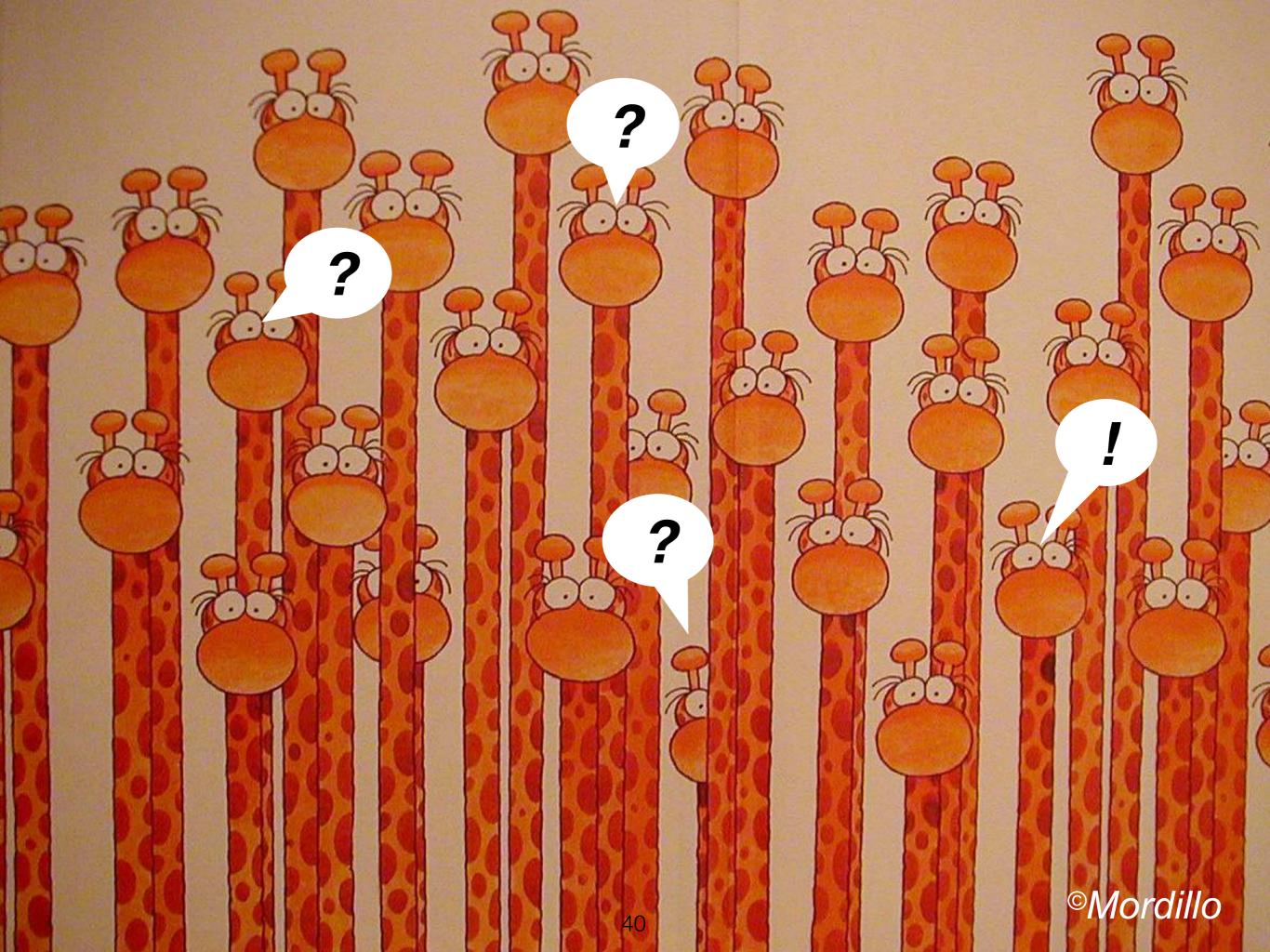
 specialists on genes / pathways database curators, reviews

functional test

Hum Mutat. 2012 Mar;33(3):488-94. doi: 10.1002/humu.22000. Epub 2011 Dec 29.

A rapid and cell-free assay to test the activity of lynch syndrome-associated MSH2 and MSH6 missense variants.

Drost M¹, Zonneveld JB, van Hees S, Rasmussen LJ, Hofstra RM, de Wind N


frequently used, expert analysis

diagnostic lab may change from detect variants to test variants unpublished data

saturation mutagenesis
 massive mutagenesis gene / gene region
 test all variants (functional test)

Functional tests?

•••

